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Abstract

A numerical model is developed to examine laminar

flame spread and extinction over a thin solid fuel in low-

speed concurrent flows. The model provides a more precise

fluid-mechanical description of the flame by incorporating

an elliptic treatment of the upstream flame stabilization

zone near the fuel burnout point. Parabolic equations are

used to treat the downstream flame, which has a higher flow

Reynolds number. The parabolic and elliptic regions are

coupled smoothly by an appropriate matching of boundary

conditions. The solid phase consists of an energy equation

with surface radiative loss and a surface pyrolysis

relation. Steady spread with constant flame and pyrolysis

lengths is found possible for thin fuels and this facili-

tates the adoption of a moving coordinate system attached

to the flame with the flame spread rate being an eigen-

value. Calculations are performed in purely forced flow in

a range of velocities which are lower than those induced in

a normal gravity buoyant environment. Both quenching and
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blowoff extinction are observed. The results show that as

flow velocity or oxygen percentage is reduced, the flame

spread rate, the pyrolysis length, and the flame length all

decrease, as expected. The flame standoff distance from

the solid and the reaction zone thickness, however, first

increase with decreasing flow velocity, but eventually

decrease very near the quenching extinction limit. The

short, diffuse flames observed at low flow velocities and

oxygen levels are consistent with available experimental

data. The maximum flame temperature decreases slowly at

first as flow velocity is reduced, then falls more steeply

close to the quenching extinction limit. Low velocity

quenching occurs as a result of heat loss. At low veloci-

ties, surface radiative loss becomes a significant fraction

of the total combustion heat release. In addition, the

shorter flame length causes an increase in the fraction of

conduction downstream compared to conduction to the fuel.

These heat losses lead to lower flame temperatures, and

ultimately, extinction. This extinction mechanism differs

from that of blowoff, where the flame is unable to be

stabilized due to the high flow velocity.
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Chapter 1. Introduction

The study of combustion in a microgravity environment

offers a chance to examine aspects of flames without the

complicating influence of natural convection. I Recently,

interest in microgravity combustion has been steadily in-

creasing. This is due in large part to experiments already

performed in microgravity, each of which has revealed new

and exciting combustion phenomena. 2

While the body of scientific knowledge of microgravity

combustion has been getting larger, there is still an ever

increasing series of new questions which arise. Therefore,

the demand for microgravity facilities (such as the Space

Shuttle, drop towers, and Keplerian trajectory aircraft)

has increased considerably.

In addition to the scientific reasons, a practical

concern of studying combustion in microgravity is space-

craft fire safety. In a recent paper detailing past and

present fire safety practices aboard spacecraft, it is

concluded, among other things, that "the microgravity

research community has much to offer advanced spacecraft

fire safety. "3

As is true with any scientific research effort, an

experiment should be complemented by a theoretical investi-

gation. The theoretical side of the research is often

guided by the experiment, but likewise can aid in the

1
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selection of the experiment. When seen in this light, the

theoretical effort is simply the formalization and expan-

sion of the knowledge obtained in the experiment.

Additionally, a sound theory is useful in predicting

results when an experiment is infeasible. This is espe-

cially evident in microgravity studies. Any earthbound

facility is limited in its ability to provide a micro-

gravity environment, and of course a space experiment is

very costly. Thus, a capable theory becomes a valuable

tool both in understanding and predicting the physics of

the problem.

I.I. Classes of Solid Combustion

Solid combustion is a broad field. Its study is made

tractable by dividing it into several classes. First,

almost all common fires are composed of diffusion flames.

A diffusion flame initially separates the fuel and oxidiz-

er, which diffuse into the flame zone and react, hence the

name.

Flames can be stationary or spreading. A stationary

flame is established when only a fixed area is exposed to

the flame. On the other hand, a spreading flame, which is

of more practical concern, greatly depends on the rate at

*In a premixed flame, on the other hand, the fuel and

oxidizer are initially mixed. The combustion of a double-

base solid propellant is an example.
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which the solid fuel can be heated up to its pyrolysis

temperature. Thus, any prediction of a spreading flame

needs to consider the solid phase.

A further division is made by considering the direc-

tion of the oxidizer flow relative to the direction of

flame spread, shown in fig. I. In opposed flow flame

spread, the flame spreads in the direction opposite the

flow (fig. la), while in concurrent flow flame spread, the

flame spreads in the same direction as the flow (fig. !b) .

The oxidizer stream can consist of forced flow, buoyant

flow, or a combination of the two. On earth, a hot flame

generates buoyant flow up. Thus, a flame spreading

downward spreads in opposed flow mode, and a flame spread-

ing upward spreads in concurrent flow mode.

Concurrent flow flame spread has received much atten-

tion, since fires of practical interest are most hazardous

in this configuration. Many experiments and analytic

studies have been performed on concurrent flow flame

spread. Detailed numerical predictions have been somewhat

hindered by the complicated nature of the problem, since

the flames are often large, turbulent, and radiant.

Whether opposed flow or concurrent flow, certain

fundamental mechanisms apply. The flame transfers heat to

the solid by conduction and radiation. This heat causes

the solid to gasify, and the gaseous fuel then flows toward
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the flame. In the flame zone, fuel and oxygen come

together, react, and sustain the flame. The flame is

stabilized in a position that balances the complicated

flows of heat and mass.

To get a complete understanding of these flames, we

are interested not only in their structure and spread

characteristics, but also in extinction (or how they go

out). Everyone is familiar to some degree with the effect

of flow velocity on flames. For example, gently blowing on

a weak fire usually intensifies it. However, blow too

hard, and the fire will go out. This "blowoff" is due to

the fact that too much oxygen is supplied to the flame.

The reaction rate in the flame zone simply cannot keep pace

with the high flow rate of oxygen, and the flame is

literally blown away. Blowoff extinction has been studied

extensively.

On the other side of the coin, what would happen to a

flame if the flow of oxygen were reduced steadily, perhaps

all the way to zero? In the gravitational field of earth,

we cannot answer this question, since buoyant flows (on the

order of tens of centimeters per second) will always

accompany any flame. By studying flames in microgravity,

we can endeavor to answer this and other questions. Will

the flame burn continuously, or will it eventually go out?

Why? What is the effect of low-speed flow on the flame?



6

A theoretical model 4 suggests that the flame will eventual-

ly go out as the flow velocity is reduced. The reason is

that heat loss becomes important. The heat loss reduces

the flame temperature below the point that combustion can

be sustained.

In this effort, concurrent-flow flame spread over a

thin fuel in zero gravity* is to be studied. The flow

field is generated by purely forced convection. (There is

no buoyant flow since gravity is assumed to be zero.)

Whenever we say "thin fuel" we mean hydrodynamically and

thermally thin. Hydrodynamically thin means that the

thickness of the fuel is always much smaller than the

distance of the flame from the fuel surface (or, equiva _

lently, the gas phase length scale). Thermally thin means

that the rate of conduction in depth of the solid fuel is

much faster than the heat up rate of the gas phase along

the fuel surface (effectively, this means that the tempera-

ture is constant across the fuel thickness).

Before proceeding with a detailed explanation of the

problem, a brief presentation of earlier related work on

solid phase flame spread is given below. The following

discussion is not intended to be an exhaustive review, but

*In a spacecraft, a microgravity environment exists.

We consider strictly zero gravity, however, as a starting

point. To model microgravity effects, buoyant and inertial

forces should be considered.
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instead outlines the historical framework which provided

the motivation for this work.

1.2. Solid Phase Combustion Modelling Techniques

The earliest models relied on heat transfer arguments

to obtain expressions for global parameters (e.g., spread

rate) in terms of other known quantities. Despite their

simplicity, trends were predicted fairly well. (Today,

more sophisticated analytical predictions of piloted

ignition and flame spread using fuel and environment

parameters as inputs are used to try to cover a wide range

of conditions. 5)

More sophisticated models solved conservation equa-

tions to obtain a better understanding of the flames. The

earliest of these solved parabolic (or boundary layer type)

equations. Sometimes, similarity solutions existed.

Otherwise, these equations could be solved by a numerical

marching scheme, i.e., given an initial profile, the

downstream profile at the next grid point could be found

immediately. Furthermore, the "flame sheet" approximation

was made. This assumed that as soon as the fuel and

oxidizer met, they reacted (infinitely fast). This

neglected the detailed chemical reaction effects.

Later models began to include real, finite-rate

chemical reaction effects. The added difficulty was in the

evaluation of highly non-linear Arrhenius rate relations.
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Finally, models included the complete (elliptic)

conservation equations, together with finite-rate reaction

expressions. The solution of elliptic equations is

considerably more difficult than parabolic equations, since

any point in the domain is, in general, affected by all

surrounding points, not only upstream points. Early models

of this type assumed a velocity field, but eventually, even

the full Navier-Stokes equations were solved.

Some studies of flames above solid fuels were simpli-

fied by considering the case where the flame was station-

ary. How is a stationary flame established? The trick is

to allow only a small area of fuel to be exposed, and

assume the rate of fuel regression (or burnout) is small.

A good simulation of such a flame is made by considering a

flame over a fuel soaked wick, or a flame above a porous

burner through which fuel is forced. In either case, of

course, no burnout can occur. Stationary flame studies are

well-suited to examining the flame structure as a function

of environmental parameters, but cannot examine flame

growth and spread. In the following discussion, both

stationary flame and flame spread models will be presented.

1.3. Overview of Early Relevant Solid Combustion Models

An approximately chronological summary of combustion

modelling research relevant to this work is presented. As

was mentioned previously, only a cursory overview is given.
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The reader is advised to examine several review arti-

cles 6'7 for a more complete early history, as well as a

more recent review. 8

An early work 9 examined the stationary flame structure

of a fuel soaked wick both with an experiment and a

numerical model. In the model, laminar, boundary layer

type equations were solved to obtain the flame structure in

the flame and thermal plume. The initial profile for the

equations was provided by a similarity solution which

exists over the region where pyrolysis was occurring (i.e.,

above the wick). Infinitely fast kinetics (flame sheet

approximation) were assumed. While the prediction approxi-

mated the experimental results fairly accurately, the model

was simple by today's standards. Yet, by the authors' own

admission, it was too awkward to use for direct flame

spread analysis, given their computational capabilities.

A predictive model of flame spread in concurrent flow

in several different geometries (floor, ceiling, and wall,

e.g.) was produced. I0 The solid phase was unsteady, and the

gas phase quasi-steady, i.e., the gas phase response time

was much shorter than the characteristic solid time. The

gas phase equations were two-dimensional, laminar, and

parabolic (boundary layer type). Radiation was neglected,

and a flame sheet approximation was made. Using various

assumptions, the solid and gas phase equations were
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decoupled and a similarity solution was found for all

equations except for the species equation downstream of the

pyrolysis zone (a similarity solution for the ceiling

configuration was not found, however).

One of the limitations of these works was the

neglection of finite-rate chemical kinetic effects. Since

a flame is a complicated reacting system, the inclusion of

an improved chemical model is necessary. The effects of

temperature, fuel and oxidizer concentration, flow veloci-

ty, and mass diffusion then can be seen to influence flame

spread and extinction characteristics through the flame

chemistry. Including finite-rate chemistry, the elliptic

two-dimensional, quasi-steady gas phase energy and species

equations were solved. II The flow field was assumed uni-

form, thus eliminating the need to solve the complicated

Navier-Stokes equations. The solid fuel equation neglected

conduction ahead of the flame, but included an Arrhenius

type pyrolysis relation and unsteady s%lid phase heat up.

Opposed flow flame spread over a thin solid fuel was

examined. By considering opposed flow flame spread, the

problem is immediately simplified because the flame is not

only shorter*, but the spread process only depends on the

flame structure at the anchor point, whereas in concurrent

*The shorter flame can make the effects of radiation

and turbulence less important.
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flow, the entire flame and thermal plume should be consid-

ered to predict spread rate. Flame spread and blowoff

extinction were obtained, in good agreement with experi-

ment. This model provided the basis for many of the more

recent ones, including this work, which are able to utilize

improved computer capability and performance.

Another attempt to go beyond the flame sheet assump-

tion was made. 12 A stationary flame calculation, which

solved the laminar boundary layer equations for velocity,

temperature, and species, included a finite-rate chemical

reaction term. As done in earlier work, the initial

profile was provided by the similarity solution which

exists in the pyrolysis zone. The finite rate chemistry

effects led to a shorter flame length and fuel preheat

distance. In addition, there was the possibility of fuel

vapor escaping from the flame zone unreacted (escaped

pyrolyzates or incomplete combustion), which could be

quantified.

Modelling continued to move toward a more thorough

formulation. The complete elliptic set of equations,

including the Navier-Stokes equations, were used to examine

the mixed flow* combustion of a vertical fuel plate imbed-

ded in an inert substrate. 13 Laminar, steady flow was

*Mixed flow includes any combination of buoyant and
forced flow.
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assumed. The fuel plate was 4 centimeters long, and the

inert substrate extended 1 centimeter in front of the fuel.

Fuel burnout was assumed to be negligible, so a stationary

flame existed. The small fixed length of the fuel permit-

ted computation, since a fuel of longer extent would

require a prohibitively large computational time. A simple

energy balance was used to model the rate of production of

pyrolysis products from the fuel. The equations were

solved in dimensional form, and results demonstrated the

importance of the pressure field in controlling the flow

near the flame stabilization point.

A similar examination of a stationary flame stabilized

at the leading edge of a fuel plate was carried out. 14

The main difference from the previous work was the fact

that the fuel began immediately (i.e., there was no inert

plate extension) and the fuel plate extended all the way

downstream. Again, the full two-dimensional laminar

elliptic equations were solved (here, in nondimensional

form) including finite-rate chemical reaction. The effect

of flow velocity on the structure of the flame was examined

(buoyant flow was neglected). At first, the flame envel-

oped the fuel completely, but as the flow velocity was

increased, the flame retreated downstream, and was eventu-

ally blown mut of the computational domain. The importance

of using elliptic equations to model the stabilization of
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the flame was demonstrated. Furthermore, at arbitrarily

low flow velocities, a flame which was dimensionally small

but kinetically strong was found to exist. This was

because, with the neglection of any heat loss mechanism,

the flame had plenty of time for the combustion reactions

to proceed, but merely reduced its size.

A concurrent flow flame spread model examined the

combustion of a thin fuel. 15 This laminar, unsteady

formulation was able to predict the initial transitory

flame growth period followed by steady flame propagation.

The laminar, two-dimensional, elliptic energy and species

conservation equations were solved numerically. A simple

finite-rate chemical reaction was assumed. Solution of the

Navier-Stokes equations was avoided by prescribing a

velocity field, in this case, a constant property Hagen-

Poiseuille flow. Relatively high velocity forced flows

(i.e., 60 cm/s and up) were studied. Some agreement with

experimental data was obtained, all the way up to the

blowoff limit.

1.4. Microgravity Combustion of Solids:

Modelling and Experiments

Up to this point, the discussion has presented work

which was not necessarily interested in the effects of

microgravity. If gravity was neglected in a work, a high

forced flow velocity was substituted. In ref. 14, there
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were hints of the utility of studying that type of combus-

tion in a reduced gravity environment. At low forced flow

velocities (sub-buoyant), the flame was very small, and

could be more susceptible to heat loss effects. Thus, the

solid fuel was allowed to lose heat through black body

radiation. 16 Now, as the flow velocity was decreased, the

flame eventually went out due to the increased relative

importance of heat loss. Thus, both quenching and blowoff

extinction were observed.

At this time, the importance of an elliptic treatment

of the flame stabilization zone was recognized. 17 This is

due to the fact that in the stabilization zone, the thermal

length is the appropriate scale (meaning the product of the

Reynolds and Prandtl numbers is unity, or RexPr=l), and

thus the Reynolds number in the flame stabilization zone

was order unity*. When the Reynolds number is order unity,

diffusion of mass, momentum, and heat in both the stream-

wise and cross-stream directions is important. Thus,

elliptic type equations result. A unified presentation of

quenching and blowoff extinction for several flame systems

was made.

*The Prandtl number is order unity for most common

gases. It is a measure of the rate of diffusion of

momentum to the rate of conduction of heat for a given
fluid.
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In more concrete terms, the thermal length is found by

considering a simple convection/conduction balance. As the

cold oxygen stream flows into the flame and is warmed to

the flame temperature, its rate of change of energy is

given by the expression puCp(Tf-T_), where p, u, and Cp are

the gas density, velocity and specific heat respectively.

Tf is the flame temperature, and T_ is the ambient tempera-

ture. This flow is heated by conduction from the flame,

given approximately as K(Tf-T_)/x, where _ is the thermal

conductivity of the gas and x is thermal length. Equating

the two expressions yields the thermal length, x=K/(puCp).

Then, defining a Reynolds number based on x, this last

expression is equivalent to RexPr=l.

The experimental efforts examining flame spread over

solid fuels in microgravity began to expand. Quiescent

flame spread over a thin fuel in microgravity was stud-

ied. 18 Experiments were conducted at atmospheric pressure

over a range of oxygen percentages from pure oxygen down to

the limiting value. Among the findings, quenching extinc-

tion was observed in microgravity. It was found to be

quite different from blowoff extinction encountered in

normal gravity. The flame structure and low flow veloci-

*A flame spreading in a quiescent, microgravity

environment spreads in opposed flow mode. This is clear in

a flame-fixed coordinate system, where the oxidizer feeds

into the flame in the opposed flow configuration.
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ties verify the need for an elliptic system of equations to

model the problem in that the Reynolds number and Peclet

number are order unity. This is especially true for slow

flames in microgravity, where the flame stabilization

region is a large percentage of the overall flame zone.

The previous results were combined with a study

examining the effect of low speed flow on these flames

spreading in microgravity 19 to clarify the role of convec-

tion on opposed flow flame spread and extinction. 20 An

extinction boundary was generated. Another more recent

investigation 21 filled in additional data. For a flame

burning at a given oxygen percentage, as the characteristic

velocity* was increased, the flame would eventually be

blown off and as the characteristic velocity was decreased,

the flame eventually was quenched. Between the two limits,

there was a point where the flame would spread fastest.

This point could be at a velocity below that due to normal

gravity buoyant flow. Hence, the most hazardous condition

from a fire safety standpoint could happen if buoyancy is

completely removed and a small forced flow is applied. In

*The characteristic velocity represents the rate at

which oxygen is convected into the flame zone. It is best

visualized in flame-fixed coordinates. For example, for

quiescent opposed flow flame spread, the characteristic

velocity is the flame spread rate. For a downward burning

flame in a gravitational environment, the characteristic

velocity is the magnitude of the buoyant flow at the flame

stabilization point, plus the spread rate.
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a spacecraft, therefore, ventilation currents may establish

this scenario. The importance of further work was clear.

On the modelling front, a sophisticated prediction of

opposed flow flame spread characteristics at microgravity

was made. 22 Imposed flow velocities from zero (no flow,

quiescent spread) all the way up to the blowoff limit, were

studied. This steady, laminar, two-dimensional model nu-

merically solved the full Navier-Stokes equations together

with elliptic energy and species concentration equations.

Radiation from the gas and solid phase, and their interac-

tion, was modelled. Sample flame structures and radiation

profiles were given. It was found that flames in micro-

gravity are radiatively controlled, a phenomenon that would

be masked in normal gravity. Specifically, results showed

that including gas phase radiation greatly changed the

flame structure in that a cooler, smaller flame results.

Although, by including only surface radiation (and neglect-

ing gas phase radiation completely) flame spread rates and

extinction trends were largely unchanged. This suggests

that the important aspects of low-speed flame spread

modelling can be captured without including the very

difficult gas phase radiation treatment, but instead only

the essential heat loss mechanism given simply by solid

phase radiation. However, it is clear that gas phase

radiation is necessary to complete the task of quantita-
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tively predicting flames, when detailed chemistry and soot

production need to be included.

Very recently, the last model has been upgraded to

examine unsteady opposed flow flame spread over thermally

thick solid fuels. 23 All of the features were retained,

with the exception that a simplified treatment of the gas-

phase radiation was made, since computation otherwise would

be too slow.

Another current research effort 24 has examined the

ignition and spread of a flame in a zero gravity environ-

ment. This unsteady model is mainly different from others

in the assumption that the velocity field can be calculated

using potential flow, relaxing the no-slip boundary

condition on the fuel surface. Initial results considered

the axisymmetric case of quiescent spread. The case of

imposing a slow flow on the flame is under development.

Here, a three-dimensional computation is required.

1.5. Combustion Experiments in Space

Finally, some mention of the ultimate microgravity

environment will be made. Ideally, we would like to have

unlimited time, space, and accessibility to carry out

microgravity combustion experiments. The best we can

achieve today, with respect to duration and quality of

microgravity, is provided by spacecraft such as the Space

Shuttle. However because of the large amount of time and
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money required to build and perform a space experiment, the

study of combustion in a spacecraft environment has been

severely limited. In fact, up until a few years ago, only

one set of experiments had been performed. In the 1970's,

the combustion characteristics of various practical solid

materials were examined aboard Skylab. 25 The objectives

were very simple, in that only visual observations were

made on whether and how the various materials burned, and

in some cases, extinguished, in quiescent environments.

Motion picture photography enabled measurement of spread

rate. In general, the flames were reported as being weaker

than their normal gravity counterparts. However, while

venting the chamber to extinguish the flame, combustion

would first intensify due to the generation of air cur-

rents. This hinted at the importance of flow on combustion

in microgravity.

Within the last two years, the second set of experi-

ments, examining the combustion characteristics of thin

paper samples, was performed aboard the Space Shuttle. 23

Several successful runs at different oxygen percentages and

pressures have been carried out in a quiescent chamber.

Thermocouple readouts as well as film photography were

utilized. Results demonstrated that the flames were in

general weaker, more diffuse, less yellow, and larger than

their counterparts in normal gravity. The appearance of
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the flames suggests an extinction mechanism caused by a

drop in flame temperature due to heat loss. This heat loss

mechanism has been proposed in an earlier theoretical

model. 4

In mid-1992, several small scale combustion experi-

ments were performed aboard the shuttle within a glovebox

module. 26 Three experiments examining candle flames, wire

insulation flammability, and smoldering combustion were

successfully performed. Motion picture photography, still

photography, and thermocouples were used. Results are

preliminary, but the microgravity environment has once

again produced new and interesting phenomena.

The preceding paragraphs represent the entire history

of spacecraft-based combustion experiments. While addi-

tional combustion experiments are slated for spacecraft in

this decade, by and large, most of the effort has relied on

earth-based facilities such as drop towers, Keplerian

trajectory aircraft, and computational studies.

1.6. Summary

The brief presentation above shows the current

direction of flame spread modelling. Clearly, work

continues to be guided by increased computational power.

Earliest work focused on obtaining simple heat transfer

based expressions. Then, similarity solutions were em-

ployed. Eventually, parabolic equations were solved
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numerically to capture the downstream region of flames. As

computational power increased, elliptic computations first

started to appear. The first of these assumed a flow

field. Ultimately even the fully elliptic Navier-Stokes

equations were solved to capture small flames or flame

stabilization regions.

The scope of this work then becomes evident as an

attempt to further our understanding by studying concurrent

flow flames with the complete equations. Elliptic equa-

tions are used in the flame stabilization region. Down-

stream, parabolic equations are used to capture the

relatively long preheat region, where the hot gases heat

the unburnt fuel. The entire preheat history of the solid

needs to be considered, since the rate at which the fuel is

heated affects the flame spread rate.



Chapter 2. Theoretical Formulation

The problem considered in this work can be described

as steady, concurrent flow flame spread over a thin solid

fuel in low-speed forced flow. More specifically, "concur-

rent" means that the flame spreads in the same direction as

the flow velocity. "Thin" means that the fuel is both

hydrodynamically and thermally thin. Hydrodynamically thin

means that the thickness of the fuel is always much smaller

than the distance of the flame from the fuel surface (or,

equivalently, the gas phase length scale). Thermally thin

means that the rate of conduction in depth of the solid

fuel is much faster than the heat up rate of the gas phase

along the fuel surface (effectively, this means that the

temperature is constant across the fuel thickness).

Furthermore, the fuel is considered thin enough that it

burns out before the flame becomes too large (e.g. turbu-

lent). Low-speed forced flows are considered, at strictly

zero gravity.

The geometry is shown schematically in fig. 2. Here,

the flame is shown stabilized over the fuel, which burns

out completely at x=0. A steady* formulation is allowed

*For flame spread over thick fuels, the ignition

method can affect subsequent flame spread and extinction.

Thus, an unsteady formulation is needed. For thin fuels,

the ignition method shouldn't matter as long as a steady

solution exists.

22
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by solving the equations in "flame-fixed" coordinates. The

coordinate system is attached to the burnout point of the

solid fuel. A transformation between laboratory and flame-

fixed coordinates is given simply by considering the rate

of flame spread. In flame-fixed coordinates, the forced

convective stream feeds in from the left at the rate U_

diminished by the flame spread rate VF, which is an unknown

eigenvalue. In addition the fuel feeds in from the right

at the flame spread rate.

The model employs two-dimensional, steady conservation

equations. The domain is divided into an "elliptic region"

and a "parabolic region" as shown in fig. 2. These regions

get their name from the nature of the equations being

solved there. In the elliptic region, diffusion in both

coordinate directions is considered and boundary conditions

are required around the entire boundary of the region. In

the parabolic region, diffusion in the stream-wise direc-

tion is assumed to be small compared to diffusion in the

cross-stream direction. Thus, boundary conditions are only

needed on two sides of the domain (the top and bottom).

The parabolic region also requires an initial profile

specification.

One might ask why the parabolic region is necessary at

all if the elliptic region captures the flame stabilization

zone. The answer lies in the solution of the solid phase



25

equations. The solid begins to be heated far downstream of

the flame stabilization zone. Therefore, it is wise to

treat this long region with the more economical parabolic

formulation as soon as the Reynolds number (or more

appropriately, the Peclet number) is large enough.

The elliptic region is considerably more difficult to

solve both because the equations are more complicated and

since boundary conditions are required around the whole

region. Our goal has been to make use of the parabolic

equations where appropriate to save computation time, while

at the same time using the full elliptic equations to

accurately model the flame stabilization region where

diffusion in both coordinate directions is important. The

two regions are described in detail below.

2.1. Elliptic Region

2.1.1. Flow Field Equations

The flow field is solved using the full Navier-Stokes

equations. The continuity equation is needed for closure.

Stokes' hypothesis is assumed, and is a good approximation

for air. 27 In two dimensions, the equations are:

a(_) + a(_) =o (i)
Continuity: a(x) a(y)

Conservation of momentum in x-direction:

pu_-_+ =---+ _ 2- +a_ a_ -E_ a_ 3 _-_

a r-,a (2)
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Conservation of momentum in y-direction:

(3)

Please note that a bar above a variable indicates that it

is a dimensional quantity.

The inertia terms are on the left hand side of the

momentum equations and represent the acceleration of a

fiuid element as a result of the applied forces, which

appear on the right side of the equations. The first term

is the pressure gradient, the second set of terms represent

the viscous shear stress, and the last term in the x-

momentum equation is the force due to buoyancy. This

buoyant term takes the convenient form as shown after the

hydrostatic pressure distribution (which would occur in a

quiescent fluid) is subtracted. In this form, it is

evident that a density difference leads to flow. The

hydrostatic pressure field due to the body force term is

not of interest. (However, for all calculations in this

work, it is assumed that g=0.)

Since the density of the fluid changes substantially

in a flame, the equations are written in compressible form.

The density is evaluated by using the equation of state:

P =pRT (4)

The temperature dependence of viscosity is assumed to be
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p

_T (5)

In reality, viscosity (and other transport coefficients

presented later) are a weaker function of temperature than

the assumed linear relation given in eq. (5). However for

simplicity, we use this expression, and do not expect any

qualitative trends in our results to be affected.

2.1.2. Flow Field Boundary Conditions

As described earlier, boundary conditions need to be

specified over the entire region. Please refer to fig. 2

for the complete picture.

Inflow ( x = Xmi n ) : _ = U. - V F , v = 0 (6, 7)

Top (Y = Ymax ) : _ = U--_- _F, _V/_ = 0 (8, 9)

Outflow (x =Xmax) : _U/_ and _/_ are given by the

parabolic solution, which is described later.

Bottom (_=0) :

_<o: _/_7=o, V=o (lO, 11)

[>-0: _=-VF, V=V w (12, 13)

The spread rate VF is an eigenvalue which is found as part

of the solution. It is updated at each iteration, and is

found in the solution of the solid phase equations,

described in a later section. The velocity Vw is also

determined by the solid phase equations. Basically, the

mass flux from the fuel depends only on the temperature of

the fuel. Knowing the mass flux, we can calculate Vw.
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Since the velocity is given at the inflow and bottom

of the domain, pressure is not known here. Because very

low speed flows are considered, pressure varies only

slightly from the ambient value of 1 atm. For this

problem, it is sufficient to set pressure to 1 atm. at an

arbitrary point in the domain. The upper left corner is

chosen.

These boundary conditions assume that the flow is

perfectly aligned with the fuel plate. While in a space-

craft environment the recirculation currents are quite

random, the sensitivity of the flame to angle of flow

velocity was outside the scope of this effort.

Through these boundary conditions, one of the princi-

pal parameters of interest is varied, namely the free

stream velocity U_. The last boundary conditions, eqs.

(12) and (13), are given by the solution of the solid phase

equations. From the point of view of the gas-phase

equations, the coupling between the gas and solid phases is

made through these boundary conditions.

2.1.3. Nondimensional Equations and Boundary Conditions

There are several reasons for using nondimensional

equations. A proper choice of scaling parameters simpli-

fies numerical computation. Consider an example where we
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use a length scale r , L0, to nondimensionalize the spatial

coordinates in the governing equations. We want to ensure

that L0 is the smallest scale of importance in the physical

solution of the problem, so that we know that taking ten

grid points in that scale, for example, should be suffi-

cient to accurately solve the problem. Thus, much of the

guesswork in choosing a grid is eliminated as other

parameters in the problem are changed. Another important

reason to nondimensionalize is to capture the important

parameters in the problem, for example, the Reynolds

number. Finally, from a practical point of view, nondim-

ensional variables are good to work with since their values

should be order unity. Otherwise, it is sometimes clumsy

to deal with very small or very large numbers in the same

problem, and can make the presentation of results in such

cases somewhat confusing.

Velocity is nondimensionalized by the characteristic

relative velocity UR=U_+UB-VF. The three components

represent a contribution from forced flow, buoyant flow,

and flow due to the rate of flame spread, respectively. UR

is a measure of the net velocity near the flame stabili-

zation region due to these three terms.

*The length scale is a function of other parameters

in the problem, and thus can change with these parameters

for different cases.
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The coordinates _ and _ are nondimensionalized by the

thermal length, given as _R=_*/UR. The thermal length is

found by considering a conduction-convection balance, and

is a good measure of the flame standoff distance and the

flame thickness in the stabilization zone. The asterisk

indicates that the property is evaluated at the temperature

_*, which is the mean of the adiabatic flame temperature

and the ambient temperature. For convenience, we use

T*=I250K in all cases.

The property values are based on air, which is a good

approximation to the dominant component in the gas phase.

While certain property values depend greatly on composition

(e.g., large heavy fuel molecules behave quite differently

than air), a detailed specification of property values

based on composition is not attempted at this time. One

reason for this is that the chemistry assumed is rather

simplified, so any prediction based on the chemistry would

be very limited.

Density and viscosity are nondimensionalized by their

values at the reference temperature T* Pressure is

referenced to the ambient value of 1 atm. and is nondim-

ensionalized as P= (_-P--_)/P*U--R 2. These (and all) non-

dimensional parameters are also listed in the nomenclature

list. Using these quantities, the equations become:
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Continuity: @(pu) + a(pv) =0 (14)
a(x ) a(y )

Conservation of momentum in x-direction:

a r ,as Or)]+Pr_[_ +_ +Gr (p.- p) (15)

Conservation of momentum in y-direction:

o[(ou (16>

In these equations, the Prandtl number, Pr, appears. This

is the result of choosing the thermal length as the

characteristic length scale. For all cases, Pr is assumed

constant and equal to 0.7. The Reynolds number based on x,

Rex, is given simply as x/Pr, and similarly, Rey=y/Pr.

Equivalently, x and y represent Peclet numbers based on x

and y respectively. The boundary conditions become:

Inflow (x = Xmi n) : u= (U.-VF)/UR, V=0 (17, 18)

Top (Y = Ymax) : u = (U_-V F) /U R , _v/_y = 0 (19, 20)

Outflow (x = Xmax) : _U/_X and _v/_x are given by the

parabolic solution, which is described later.

Bottom (y = 0) :

x < 0:

x> 0:

_u/_y=0, v=0 (21, 22)

u=-VF/U R , v=v w (23, 24)

Note that for purely forced flow, (U--_-_F)/_R=I-

2.1.4. Energy Equation

By assuming the specific heat of the gas is constant,
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conservation of energy enables us to write an equation for

temperature as follows:

(25)

The left hand side of the equation represents the convec-

tion of heat. The right hand side is the heat conduction

term and the source term due to the chemical reaction. The

heat release due to viscous dissipation and compressive

work are neglected since they are small compared to the

combustion heat release. The specific heat, Cp, is assumed

constant. The conductivity is assumed to vary according

to:

K_T (26)

The form of the energy source term is:

Q-=Q Bgp2yF Yo exp (-Eg/RT) (27)

This finite rate expression is for a one-step, second order

reaction.

2.1.5. Energy Equation Boundary Conditions

The boundary conditions for the energy equation

resemble those for the momentum equation, since they are

both elliptic in nature:

Inflow (X=Xmi n) :

Top ( Y = Ymax ) : T = T.

Outflow (x = Xma x ) :

T =T. (28)

(29)

_/_ is given by the parabolic

solution, which is described later.
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Bottom (_=0) :

< 0 : _/_ = 0 (30)

_>_0: T=T s (31)

The relation given in eq. (31) is determined by solution of

the solid phase equations, which is described shortly.

2.1.6. Nondimensional Energy Equation

and Boundary Conditions

Temperature is nondimensionalized by the ambient

temperature, T., and conductivity is nondimensionalized by

its value at _" (of these two reference temperatures, the

former is useful in presenting results, while the latter is

appropriate for evaluating property values).

becomes:

pu aT + pv aT
ax

where

The equation

=DaQ p2YFYoexp(-E/T) (33)

Note the appearance of the Damkohler number, Da, in the

last equation (Da=_'p'Bg/U_). The Damkohler number is

the ratio of the characteristic flow time over the chemical

reaction time in one thermal length.

as the square of relative velocity.

tions are:

Inflow (x = Xmi n) : T = 1

Top (Y = Ymax) :

Outflow (x = Xmax) :

It varies inversely

The boundary condi-

(34)

T = 1 (35)

_T/_x is given by the parabolic
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solution, which is described later.

Bottom (y = 0) :

x< 0:

In eq.

_T/Sy = 0 (36)

x > 0: T = T s (37)

(37), T s is determined by solution of the solid

phase equations.

2.1.7. Fuel and Oxygen Species Conservation Equations

The species conservation equations are:

+_v - _F_ + _gF-_ +_ (38)

- _go_ + _go-_ +_ (39)

The left hand side of the equations represents the convec-

tive term. The right hand side is the mass diffusion term

and the sink term due to the chemical reaction. The

diffusion coefficient, P Di, is assumed to vary as follows:

(pD i ) _T (40)

The form of the species sink terms is:

_ ---B_p2YF Yoexp (-E_/RT) , (_o = f_ (41, 42)

where f is the stoichiometric oxidizer/fuel mass ratio.

2.1.8. Fuel and Oxygen Species Boundary Conditions

Again, the boundary conditions resemble those in

preceding sections since the equations are elliptic:

Inflow (x =Xmin) : YF=0, Yo=Yo,_ (43, 44)
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Top ( Y = Ymax) : YF= 0, YO= YO,_ (45, 46)

Outflow ( x = Xmax ) : _YF/_ and _Yo/_ are given by the

parabolic solution, which is described later.

Bottom (_=0) :

_< 0 : _YF/_ = 0, _Yo/_ = 0 (47, 48)

2.1.9.

m

_>0 : _YF,w =_+pDF_ (@Yrl_)w (49)

_Yo,w = _Do (aYol_). (5O)
Nondimensional Species Equations

and Boundary Conditions

The terms pDi are nondimensionalized by their value at

T °

0YF 8YF
pu-_-- + pv -

OX

The equations become:

pu--_- + pv--_-- - Leo -_-

Where : _F = -Dap2YFYoexp (-E_/T) , _o = f _F

+ eF (51)

The boundary conditions

Inflow (x = Xmin) :

Top (Y = Ymax) :

Outflow (x = Xmax) :

parabolic solution,

Bottom (y = 0) :

x< 0:

x _ 0:

+ eo (52)

(53, 54)

are:

YF =0, Yo =Yo,- (55, 56)

YF =0, YO =YO,_ (57, 58)

_YF/_x and _Yo/_x are given by the

which is described later.

_YF/_y =0, _Yo/_y =0 (59, 60)

rhYF, w =m+ (pDF/Le F) (_YF/_y)w

mYo, w = (PDo/Le o) (_Yo/_Y)w

(61)

(62)
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2.2. Parabolic Region

The equations for the parabolic region are identical

to those in the elliptic region except for the neglection

of the stream-wise diffusion terms. In addition, in

deriving the flow field equations, the y-momentum equation

drops out completely, and, in this case, the pressure

gradient term in the x-momentum equation is zero. The

equations have the well-known form of boundary layer flow

over a flat plate. They are presented below.

2.2.1. Nondimensional Parabolic Region Equations

Continuity: a(pu) + a(pv) :0 (63)
a(x ) a(y )

X-Momentum: pu_ +pv_ =Pr _ +Gr (p.-p) (64)

Energy: pu-_ +pv-_ - _(K_)+Q (65)

Species:

Fuel:
aYF @YF _ 1 PDF--_-- +_F (66)pu_ + pv _ L_ F

_o _o I _( _o)pu--_-+pv-_- - L_o PDo-_- +_o (67)Oxygen:

2.2.2. Nondimensional Parabolic Region Boundary Conditions

The parabolic region requires boundary conditions only

on the top and bottom of the domain, as well as an initial

profile specification. The initial profile is given by the

values obtained at the outflow (x = Xma x) of the elliptic
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solution. Thus, velocity, temperature, and the species

concentrations are given. The boundary conditions on the

top and bottom of the domain are identical to those

presented in previous sections.*

2.3. Coupling Between Elliptic and Parabolic Regions

The coupling between the elliptic and parabolic

regions is best understood by considering the solution

algorithm. First, the elliptic equations are used for

several iterations to get an updated elliptic field. Then,

the values of the variables (u, v, T, YF, and Yo) at the

outflow of the elliptic region are used as the initial

profile for the parabolic equations. After sweeping

through the parabolic region and the solid phase equations,

the elliptic region is again calculated. This time,

however, the boundary conditions at the outflow for the

elliptic equations are based on the parabolic solution, by

evaluating derivatives with respect to x in the parabolic

region at the interface between the two regions, and using

these derivative boundary conditions for the elliptic

region.

In previous elliptic computations of this sort, the

outflow boundary conditions are given simply as a zero-

_One exception is the boundary condition for v-ve-

locity. Since the y-momentum equation drops out, v needs

to be specified only on the bottom of the domain.
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gradient normal to the boundary (e.g., ref. 14). This is

because information beyond the boundary is unknown. A

result is that the solution near the boundary is not as

accurate as the solution away from the boundary. In our

case, we can use the actual (non-zero) gradient as given by

the first step of the parabolic computation, as described

above. Upon iteration, the converged solution provides a

much smoother transition between the elliptic and parabolic

domains.

This is shown in fig. 3. In fig. 3a, zero gradient

boundary conditions for the outflow of the elliptic region

are used. In the elliptic region, the isotherm near the

boundary levels off due to the zero-gradient condition.

Thus, a slight dip is evident.

In fig. 3b, the results of the method used in this

work are shown. Now, there is a smooth transition between

the two regions.

2.4. Solid Phase Equations

The solid phase is solved by considering the conserva-

tion of mass and energy together with a pyrolysis relation.

The flame spread rate, VF, appears as an eigenvalue. The

geometry of the solid fuel is shown in fig. 4. The density

of the solid is assumed constant while the thickness is

allowed to decrease due to pyrolysis. In fig. 4 dimensions

are greatly exaggerated. As far as the gas phase is
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concerned, the solid is infinitesimally thin, meaning that

the flame stand-off distance is much larger than the fuel

thickness.

that:

In deriving these equations, it is assumed

_i + (dhld_)2 =i (68)

=a,(¥:- ¥2>

+PsVF-_[(_s-Cp)Tn+ (-L) +CpT s] (69)

On the left side, the first term, qy, is the conductive

heat flux incident on the solid from the gas phase. It is

given as qy= [_(_T/_)]g,w. This term represents the

coupling between the gas and solid phase from the point of

view of the solid equations. The solid phase spans both

the elliptic and parabolic regions. The second term

represents the convection of heat due to flux of fuel. As

described earlier, in the flame-fixed coordinate system

used, the fuel feeds into the domain at the speed VF. It

may be clearer for the reader to examine this term in

laboratory coordinates. In laboratory coordinates, it is

simply the unsteady bulk heat up term.

On the right side, the first term is the surface

radiative heat loss term. The second term is the energy

u_

---- d(hT s)

This is an excellent assumption for all cases studied.

The solid phase equation is:
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change due to the latent heat of vaporization of the fuel.

L is the latent heat of the fuel, which is specified at the

temperature TL (TL=300K in this problem).

The pyrolyzed gases constitute blowing from the wall.

The pyrolysis law chosen specifies that the rate of pyroly-

sis depends only on the temperature of the fuel (zeroth-

order pyrolysis). It is:

= A,Ps exp (-Es/RT s) (70 )

Using eq. (70), the blowing velocity vw can be found, since

the density of the gas is known at the wall. Remember that

the solid density, Ps, is constant. This is different from

other models II'15'22 which assumed the thickness of the fuel

was constant, but the density was decreased as pyrolysis

occurred, making the pyrolysis relation first-order. The

reason for using a zeroth-order pyrolysis relation is that

complete fuel burnout is possible. A first-order pyrolysis

law requires an arbitrary (but non-zero) specification of

unburnt solid char, at which point burnout is said to

occur.

When combined with the conservation of mass for the

solid fuel, the pyrolysis relation becomes:

m

dh _ A, exp (-E,/RT,) (71)

V,

Equations (70) and (71) are solved with the following



boundary conditions:

At x = Xma x, par "
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D

T =T., h=_ (72, 73)

m

The flame spread rate VF is an eigenvalue and is solved for

iteratively. In solving the solid phase equations, the

conductive heat flux distribution from the gas phase is

known as a function of x. The spread rate, VF, is guessed.

If this guess is too high, the fuel moves too fast for

complete burnout to occur. If the guess is too low,

burnout occurs too soon (i.e. at _>0). The spread rate is

adjusted using a simple bisection method until burnout

occurs at _=0.

Using _R, P'CpURT-, and Cs to nondimensionalize h ,

qy, and Cp respectively, the equations and boundary

conditions become:

- dh
- d(hT) =F(T4_I) +=_a__[(l_Cp)TL+ (-L) +CpT] (74)qY + _ dx

T=I, h=_/x R (75, 76)
At x = Xmax, par:

In eq. (74), _=_sVFCs/P'/_R/_p, and F=_£_/p'/_p/_ R.

The last term, F, is the non-dimensional surface radiative

heat loss parameter. It varies inversely with relative

velocity.



Chapter 3. Numerical Model

The problem is analyzed by writing the finite-differ-

ence representation of the equations and solving them using

the CRAY X-MP supercomputer at NASA Lewis Research Center.

The algorithm used is called SIMPLER (Semi-Implicit Method

for Pressure-Linked Equations Revised). This algorithm is

presented in detail in a textbook, 28 and so only the unique

features are presented here. The computer program, which

was written based on this algorithm specifically for this

problem, appears in the appendix, along with parameter

values.

In any finite-difference method, the domain is broken

up into a grid structure. The equations are written for an

individual control volume (or grid square) by considering

its interaction with neighboring control volumes. The

solution can be thought of as equivalent to finding the

parameters of interest at the interfaces of adjacent

control volumes by an appropriate interpolation method, and

then calculating the quantities at all control volumes

using some matrix inversion technique. Finite-difference

methods vary according to how they determine interface

quantities. Simple interpolation methods require less

computational complexity, but suffer in accuracy.

As can be seen in the Theoretical Formulation chapter,

the equations are quite complex. Both first and second

44
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derivative terms appear. In addition, the equations are

non-linear. These attributes lead to several complica-

tions.

3.1. Discretization of Convective Terms

The terms such as pu (_T/_x) representing convection,

are somewhat troublesome. The problem lies in writing the

appropriate finite difference representation for a given

"control volume. The physical meaning of such a term should

be considered when deriving the finite difference form. If

we assume that temperature, T, represents the energy of the

fluid, then pu (_T/_x) is the rate of energy transfer to

the control volume due to the fluid flowing at velocity u.

This is of course why it is called a convective term -- the

energy is convected by the velocity. Clearly, anything in

a stream of fluid is generally affected more by the

upstream than the downstream flow. In writing the discret-

ization equations, then, it is important to weight the

upstream quantity. It is the directional character of

velocity which drives this consideration. One common

approach is to use the upwind-difference scheme (or donor-

cell method). In this method, the value of a variable

(say, temperature) at the interface of a control volume is

set equal to the value on the upwind side of the inter-

face. This is perhaps the simplest possible weighting

function.
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While the upwind-difference scheme captures the

essential elements of a convective-diffusive transport

problem, there are instances when the method becomes less

accurate. Specifically, as the grid Peclet number _, Pe,

becomes large, conduction is overestimated. This is

because while at an interface, the value of temperature is

correctly given as described above, the conduction is

assumed based on a linear profile between the two points on

either side of the interface. In actuality, the conduction

at the interface is close to zero, but the upwind scheme

predicts a value much larger.

To overcome this difficulty, the exact solution of the

convective-diffusive equation

puCp ST- (K

is determined for adjacent control volumes. This solution

determines the value of temperature, T, to use at the

interface of the control volumes. Consider two adjacent

control volumes separated by _x. Let T L and T R be the

temperature of the two control volumes, the exact solution

of eq. (77) (assuming pu is constant for the control

volumes) is then:

_The grid Peclet number is a measure of the relative

strength of convective to conductive transport in an
individual control volume.



(T (X) - T L)

(T R -TL)
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= [exp (puCpx/K) -i] (78)

[exp (puCpAx/K) - i]

and the value at the interface between the two control

volumes is readily given. Since exponential terms are

relatively costly to compute, an approximating polynomial

(fifth order in x) is used instead. The approximation is

very close to the exact solution, enabling accuracy for any

grid Peclet number.

While eq. (77) is one-dimensional, the same idea is

used to solve the two-dimensional equations in this work.

The convective-diffusive transfer is simply considered

along each coordinate direction.

3.2. Treatment of Source Terms

In the SIMPLER algorithm, all terms other than

convective and diffusive ones are lumped together and

called source terms*. The rules governing their discret-

ization follow.

Suppose the equation of interest is the conservation

of energy, for which temperature is the dependent variable.

The source term is in general a function of T, derivatives

of T, and other variables in the problem. The key is to

*The only exception to this is in the solution of

the Navier-Stokes equations where the pressure gradient

terms are handled individually. This will be described

subsequently.
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linearize the source term as

S = Sc + SpT (79)

and ensure that Sp is always less than zero. In eq. (79),

T represents the temperature of a given control volume,

which is to be calculated. The coefficients Sc and Sp may

be functions of any number of variables in the problem

(including a value of T that is guessed or taken from a

previous iteration). This specification guarantees that

the source term will not lead to instability, even for the

highly non-linear Arrhenius rate expressions of combustion

in this problem.

3.3. Staggered Grid System

In developing the finite difference form of many

equations, it is generally a good idea to use the same grid

structure for each dependent variable to minimize the

complexity in bookkeeping all of the grid locations and

interpolation between grids. However, there is nothing

wrong with using different grid structures for different

equations. It only makes sense to do this if some benefit

can be derived. In the SIMPLER algorithm, a staggered grid

is used to eliminate problems brought on by the appearance

of first derivative terms, such as pressure gradient terms

or terms appearing in the continuity equation.

A very coarse grid structure is shown for demonstra-

tion purposes in fig. 5. The grid is generated by first
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chopping up the overall domain into smaller control

volumes. The grid location for each dependent variable

(including pressure) is taken to be the center of the

control volume. Then, u-velocity is positioned at each

vertical face, and v-velocity at each horizontal control

volume face. Thus the composite grid is comprised of three

different grid structures.

The advantage of doing this is that in evaluating the

pressure force on a velocity control volume, the pressure

at adjacent grid points is used. If all variables (includ-

ing velocity) were evaluated at the same grid points, the

pressure force would be calculated by using every other

grid point. This would be the result of a simple discret-

ization of the first derivative pressure gradient terms.

Unless treated specially, this kind of a formulation

permits highly unrealistic solutions.

3.4. The SIMPLER Algorithm

TO obtain a solution, the initial variable field is

taken from a converged case. Then, the velocity or oxygen

percentage is changed by modifying the boundary conditions.

The first step of the algorithm is to start with the

non-converged velocity field, which is supplied initially,

or taken from the previous iteration. Then, the momentum

equations are used to obtain an expression for the velocity

(x and y-direction) of the fluid in a control volume.
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These finite difference expressions will of course include

pressure. By substituting the expressions for velocity

into the finite difference form of the continuity equation,

an equation for pressure results. Pressure (call it P*) is

calculated _. Using this updated pressure field, the

momentum equations are solved to obtain new estimates of

velocity.

During iteration, these velocity estimates will not

satisfy the continuity equation. To speed convergence, a

superposed pressure field, called P', is assumed. Thus,

P=P*+P', and after convergence is reached, P'=0 everywhere.

Using the momentum equations, simplified relations for

velocity involving P' are obtained. These are substituted

into the continuity equation to obtain a P' equation.

After computing P', it is used to correct the velocity

components.

At this point, all additional conservation equations

are solved (in this case, conservation of energy and

species). Finally, the entire procedure is repeated until

convergence is reached.

*In the SIMPLER algorithm, the equations are dis-
cretized such that a tri-diagonal matrix results for a
given line of grid points. The tri-diagonal matrix is
easily inverted. Thus, in two dimensions, each row of
grid points is solved by matrix inversion, followed by
each column of grid points. This procedure pulls the
boundary information into the domain very quickly.
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3.5. Domain Structure

The grid structure should be fine enough to adequately

capture the changes in the parameters of interest. For

example, in a flame spread problem, temperature varies

dramatically across the flame. Thus many grid points are

required. However, if a uniform distribution of grid

points is used throughout the domain, most of the grid

points are unnecessary in regions where the temperature

does not change as dramatically as in the flame. Therefore

it is more efficient to use a variable grid spacing, i.e.,

in regions where the quantity varies sharply, a higher

concentration of grid points is used.*

For the flame stabilized at the leading edge of a fuel

plate, the grid points should be concentrated at the

leading edge both to capture the high temperature, narrow

flame stabilization region as well as the rapid flow field

changes due to the sudden appearance of the plate. The

variable grid structure used in this problem is shown in

fig. 6. Evident in fig. 6 is the concentration of points

both immediately upstream and downstream of the leading

edge to capture the flame stabilization zone and the abrupt

pressure and velocity changes. Additionally, the concen-

*An adaptive grid method or multigrid method would

be well-suited for this problem, but are not used at this

time.
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tration of points near the fuel plate capture the steep

gradients near the plate. The location of a typical flame

is shown superimposed on the grid structure. The particu-

lar grid spacing used in this problem was found to be more

than adequate in an earlier work. 14

In the elliptic region, x varies from about -20 to 70

and y varies from 0 to 90. The number of grid points in

the x-direction is 70 and the number of grid points in the

y-direction is 50.

The Reynolds number*, Rex, as a function of x, for any

case is simply calculated as x/Pr, where Pr is the Prandtl

number (Pr=0.7). For all cases in this effort, the

elliptic/ parabolic boundary occurred at Rex=100. A test

case was run where the elliptic/parabolic boundary was

extended to Rex=200. The thermal structure and spread rate

of the flame changed by less than 2%, so the smaller

elliptic domain was deemed adequate.

3.6. Parabolic Region

The finite difference scheme in the parabolic region

is based on a marching technique. 29 At the outflow of the

elliptic domain (Rex=100 or x=70), parabolic equations take

over. The results obtained from the elliptic region

provide the initial condition for the parabolic equations.

*Re x is based on the relative velocity, distance from

the leading edge, and properties evaluated at T*.
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A single sweep into the far downstream region (Rex=2200 or

x=1570) is utilized.

The same, variable grid structure in the y-direction

as used in the elliptic region is utilized. Also, addi-

tional points are added to the top of the domain (at Y>Yma×

in fig. 2) to give the boundary layer room to grow. Thus,

in the parabolic region, x varies from 70 to 1570 and y

varies from 0 to 150. The grid spacing in the x-direction

gradually increases, since derivatives with respect to x in

the far downstream region become smaller and smaller,

making a coarser grid adequate. There are 65 grid points

in the x-direction and 90 grid points in the y-direction.

An implicit formulation is employed, that is, at any

station x=xi, the resulting equations depend only on the

values of the variables at x=xi_ I (which are known) and at

x=x±. To get the solution at x=x i, a tri-diagonal system of

equations is solved.

3.7. Computer Usage

To compute a new case, a nearby, converged flame is

used as the initial guess. One global iteration step takes

about 7 sec. of CRAY X-MP CPU time. It consists of first

calculating the elliptic region using line-by-line sweeps

(4 horizontal sweeps, 4 vertical sweeps) for each of the

conservation equations in series. This is repeated I0

times. Then, the parabolic region is calculated using the
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marching technique described above. Finally, the conduc-

tion of the gas phase to the solid is used to solve the

solid phase equations and get new values of spread rate,

temperature, and blowing velocity. Using these values, the

boundary conditions are updated, and the global iteration

step is concluded. Typically, convergence requires about

1 hr. of CPU time.

3.8. Property Values

The property values used are presented in the nomen-

clature list. They are based on the choice of cellulose as

fuel. Some of the derived parameters require description.

Consider cellulose and air stoichiometric combustion:

C6HI005 + 6(02 + 3.76N 2) -96CO 2 + 5H20 +22.56N 2 (80)

Assuming one mole reacts:

(162g) c6_i0o5+ (192g)o2+ (632g)N2--_

(264g) co2+ (90g)H20 + (632g)N2 (81)

In order to calculate _', the mixture specific ideal gas

constant used is the average value of that for air and for

the products (nitrogen is included in the products):

R= (RAir+Rprod)/2 = (0.287 +0.302)/2 =0.295 J/g/K (82)

Based on the assumed adiabatic flame temperature of

2200 K, the gas-phase specific heat is calculated from the

simple energy balance as follows:

(Q + L) _Fu, l =mprodCp (Tf - T.) (83)

and since mprod/mFuel =6-084 , we get Cp = 0.30 cal/g/K.



Chapter 4. Results

Concurrent flow flame spread over a thin fuel in a

zero gravity* environment has been modelled. Steady

computations have been carried out over a range of forced

flow velocities and ambient oxygen concentrations at one

atmosphere pressure. The molar t oxygen percentage was

varied from 13.5 to 21, and the flow velocity was varied

from 16 cm/s down to 0.8 cm/s _. As will be described

later, the lower range of both parameters was determined by

an extinction boundary. The upper ranges were chosen arbi-

trarily, but were high enough to adequately present the

desired trends. The property values, which are given in

the nomenclature list, correspond to a thin cellulosic

sheet, which has been used extensively in recent micro-

gravity experiments_ 0,30,31

While the computation was carried out in nondimension-

al coordinates, some results will be presented in dimen-

sional form. As a reminder, the space coordinates (_ and

7) were non-dimensionalized by the thermal length. The

*Low-speed forced flow at strictly zero gravity is

modelled. The effect of microgravity is not considered at
this time.

tUnless otherwise noted, the oxygen content will

always be expressed on a molar basis.

_The magnitude of all of the forced flow velocities

considered were well below those encountered in normal

gravity flame spread.

57
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elliptic domain extended from x=-20 to 70 and y=0 to 90.

The parabolic domain extended from x=70 to 1570 and y=0 to

150. Over the range of velocities in this study, the

thermal length varied from 2.6 to 0.15 cm.

A total of 40 cases have been found. The computation-

al test matrix is shown in fig. 7. Each circle on this

plot represents a converged, steady flame. The two

parameters varied were flow velocity and oxygen percentage.

4.1. Detailed Flame Characteristics For One Case

Before proceeding with any comparisons, one case will

first be presented in detail which shows all of the

features that the computational model is capable of. For

this flame, the oxygen content was 15% and the free stream

velocity 5 cm/s. The thermal length for this case was 0.46

cm. This typical case was roughly in the center of the

parameter space.

4.1.1 Gas Phase Profiles; 5 cm/s, 15% 0 2

Fig. 8 shows isotherms in the nondimensional space.

The temperature field is able to be probed extensively. In

part (a), a long view is shown to demonstrate the extent of

the flame and thermal plume. This view in fact covers a

portion of the elliptic and parabolic domain. More will be

said later, but it is evident that the isotherms smoothly

span the interface (x=72) between the two domains. The

maximum temperature in the gas phase occurs very near the



59

8
0

0

0

0 O0

0 0 0 0 O0

0

0

0

0

0 0

0 0

0
© o

0 0

8

0

0

0

0

0

I l I , I , _ I I I I i I l t l I t , ! ] _ I I t i l I t , , ,

_- 0 O_ 00 _ _0 LO _ _0

(X) °X'UO!_Oo__-I alOla ua6,4xo

0

0
w---

co

¢,0

LO

(,8

E
(D

=--

(D
,_ o x"

(b "C-
> .,_,

E o
,9 c_ E

@ -_
_- 03LO .+_,

...-I-.-,'

(D

_1 L C
Lx_ ©

+--

o

£
©

(D

(D

L2



._Q

L



61

burnout location (x=0), as indicated. This is true for

most of the cases examined. Only as the flame approaches

blowoff does the maximum temperature get shifted down-

stream. In part (b), the flame structure at the leading

edge is enlarged to show the detail of the heat transfer in

this region. Clearly, the diffusion is two-dimensional

since significant heat and mass transfer upstream of the

fuel has occurred. This is one of the justifications for

using an elliptic treatment to capture the flame stabiliza-

tion region. Notice that the temperature changes from the

ambient value to the maximum value in the span of about one

or two units. This verifies the choice of thermal length

as the important length scale. In part (c), the solution

is reflected about the y=0 plane to show what the thermal

structure for the entire flame leading edge looks like.

The temperature tends to fan out somewhat as it cools.

This is a characteristic of the small, short flames

predicted in this work. In contrast, a flame burning in a

normal gravity buoyant environment tends to stay closer to

the fuel in the downstream region. This flame shape effect

is demonstrated in the small, low-velocity flames of refs.

20, 30, and 31.

In fig. 9, the mass transfer aspects of this diffusion

flame are presented. In part (a), the fuel and oxygen mass

fraction contours are shown in the leading edge region.
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The contours overlap most near the burnout point. Notice

how slowly the fuel is consumed in the downstream region,

based on the large separation of contours there. In part

(b), the local equivalence ratio contours are shown.

Again, the contours are drawn out downstream. In some

earlier works, the flame length is defined as equalling the

length of the _=I contour. 15 This definition is an artifact

of the flame sheet models which defined the flame as

existing at the location of stoichiometric equivalence

ratio.

In examining the expression for reaction rate, it is

seen that the three requirements needed for a robust

reaction are: I) presence of fuel, 2) presence of oxygen,

and 3) an elevated temperature. This common sense descrip-

tion suggests that the maximum reaction rate for this case

should also be confined to the near-burnout region since

this is where the temperature is highest and significant

oxygen and fuel overlap occurs. Indeed, in fig. I0, part

(a), the reaction rate contours are clustered near x=0.

The highly non-linear Arrhenius expression for the reaction

rate is unmistakable in the very sharp gradients (the

contours are separated by a factor of ten).

*The local equivalence ratio is defined as the ratio

of fuel to oxygen, divided by the stoichiometric fuel to

oxygen ratio.
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One way of defining the visible flame is to choose a

reactivity contour. This is perhaps the best way in that

the reactivity level should roughly scale with the number

of photons emitted in the reaction such that our eyes can

register something there. In this work, the reactivity

contour equal to 10 -4 g/cm3/s is arbitrarily defined as the

boundary of the visible flame (as seen later, this gives a

flame shape very similar to that found in experiment). In

a numerical study such as this, it is important mainly to

use a consistent definition of the visible flame. For

comparison, part (b) gives the isotherms and #=I contour on

the same scale.

A benefit of solving the Navier-Stokes equations is

that we can probe the velocity field in detail. In fig.

!i, velocity vectors are plotted in the flame leading edge

region There are several features which should be

pointed out. As the flow approaches the fuel plate (x=0),

it decelerates and is deflected up. Initially, the flow

decelerates due to the plate and the hot flame (the visible

flame, as defined above, is shown). The flow is deflected

both merely by the presence of the plate and due to the

influence of the blowing of pyrolysis products from the

*The velocity vectors in fig. Ii were nondimensional-

ized by the relative velocity, which for this case was 4.62

cm/s.
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fuel. Since there is gas expansion due to the heat

release, the flow accelerates in the flame zone. As we

move downstream, the velocity profile flattens out due to

viscous effects and the cooling of the gas stream. As

described earlier, the equations have been solved in flame

fixed coordinates. The fuel feeds in from the right at the

flame spread rate. In fig. Ii, the velocity on and near

the fuel plate is indeed to the left. If the transforma-

tion is made back to the laboratory reference frame, the

velocity vectors in fig. 12 result. Here, the flow

characteristics near the plate are quite conventional. The

fuel issues from the surface in the y-direction and is

blown downstream.

In fig. 13, streamlines in both flame and laboratory

fixed coordinate systems are shown. The stagnation

streamline is chosen as _=0. It shows the influence of the

fuel blowing, as it is lifted off the surface. The

streamlines given by _<0 are a result of pyrolysis gases

being blown off the fuel surface. The streamlines given by

• >0 represent the imposed forced flow.

In the velocity and streamline plots for this case,

the difference between flame and laboratory fixed coordi-

nate systems is small because the spread rate is a small

percentage of the relative velocity. The spread rate is at

most 18% of the relative velocity in all cases studied.
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The pressure field in the flame leading edge region is

depicted in fig. 14. Remember that nondimensional pressure

is used, referenced to ambient pressure, P = (P-P_)/P'/_.

The magnitude of the pressure changes in dimensional terms

is tiny, because of the very low speed flows considered.

Two pressure rises, the first due to the presence of the

hot flame and the second due to the plate are shown.

Downstream, the pressure slowly returns to the ambient

value as the gas flows from the influence of the leading

edge and flame.

4.1.2 Solid Phase; 5 cm/s; 15% 0 2

The solid phase will now be presented. In fig. 15,

the heat flux incident on the solid, the solid temperature,

thickness*, and blowing velocity are all shown over the

whole domain. All variables are in nondimensional terms.

The heat flux curve is quite spiked at the burn out point.

This is because the flame gets closest to the fuel there.

The surface temperature is relatively level in the pyroly-

sis zone. At about x=8, there is an inflection point in

both the solid temperature and heat flux curves. This

indicates the end of the pyrolysis region. At this point,

the solid thickness is at 99.9% of its unburned value.

This criterion for solid thickness is used to find the

*Here, thickness is nondimensionalized by its initial

value.
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pyrolysis length in all cases (used later in §4.3), and

corresponds very nearly to the inflection points evident in

the Ts and qw curves. Most of the fuel blowing into the gas

phase is confined to a small region on the x-axis.

4.2. Comparison With Experiment

In ref. 30, a number of experiments were performed in

the 5.18 sec. Zero Gravity Facility at NASA Lewis Research

Center in Cleveland. The effort focused on concurrent flow

flame spread over a thin fuel (tissue paper, Kimwipes*) in

very slow speeds. The forced flow was generated by moving

the entire fuel plate into a quiescent oxidizer.

While the fuel sheet was not Perfectly flat or uniform

in appearance, care was taken to get as good a sample as

possible. The detailed modelling of the macrostructure and

pyrolysis of the fuel was outside the scope of this effort.

We use a simplified model to capture the important trends.

For most of the cases, 5.18 seconds was not enough for

the flames to reach steady state. However, some of the

flames seemed to be close to steady. One such case will be

used for comparison. The experiment was performed at 15%

02 and 4.84 cm/s. The theoretical comparison is done at

15% 02 and 5 cm/s. The experiment recorded only the

visible flame using motion picture photography. Therefore,

*Trademark of Kimberly-Clark Corporation, Roswell, GA
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only a comparison of the overall flame dimensions and

spread rate is possible. In fig. 16, the computed fuel

reactivity contours are compared to the reported experimen-

tal flame shape (this is how the flame looks just prior to

the end of the 5.18 sec. drop). The flame shape is

predicted quite well if the proper reactivity level is

chosen to define the threshold of visible emission. For

this case, that level is around 10-4 g/cm3/s. In the

experiment, it was not possible to resolve where the flame

was relative to the burnout point, so the location of the

flame in fig. 16b is a guess. The predicted spread rate of

0.38 cm/s was below the experimental value of 0.55 cm/s*

Although the experimental data is not existent,

various solid phase dimensional profiles from the computa-

tion are presented in fig. 17.

Finally, spread rate data at a free stream velocity of

approximately 5 cm/s and at different oxygen concentrations

are shown in fig. 18. The model is compared to the experi-

ment. In the experiment, the velocity of both the flame

base and the flame tip is reported, as shown in fig. 18,

just before the end of the drop. Thus, the flames were

*The experimental spread rate actually is the mean of

the flame tip and flame base spread rates. They were close

(0.53 and 0.57 cm/s, respectively) but the flame was still

shrinking slightly as it approached steady state. The

shrinking flame suggests the spread rate would slow down,

given more time.
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reported as either getting shorter or longer at the end of

the drop. Reasonably good agreement is obtained, assuming

the flames will eventually reach steady state. One reason

for the difference in the quench limits may be due to the

short drop time, as a flame may need more time to go out.

An extensive comparison of all of the experimental

data at this time is not practical since, as mentioned,

many of the tests were still transient. The above data are

presented to show that the model produces qualitatively the

correct flame shape and spread rate trends, even though gas

phase radiation, detailed flame chemistry, and a complicat-

ed pyrolysis model were not considered.

4.3. Parametric Comparison of Theoretical Results

The two parameters varied in this work are free stream

velocity and oxygen concentration. Several comparisons

will be presented.

4.3.1. Global Results: Spread Rates and MaximumTemperature

In fig. 19, the computed spread rates and maximum gas

phase temperatures are presented for all of the computed

cases. The data are plotted against the reference veloci-

ty, which is the relative gas velocity with respect to the

solid burnout point (or flame) and is the quantity used in

nondimensionalizing the equations. The spread rate

increases approximately linearly with either flow velocity

or oxygen percentage. Linear regression is used to get the
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following relation, specific for the fuel used in this

work:

VF = 1.12Xo2U_- 0. 073U_ + 0. 194Xo2 - 0.121 (84)

In eq. (84), U_ and VF are expressed in cm/s. In fig. 19,

the dotted lines are flammability limits beyond which a

solution does not exist. (The flammability limits will be

discussed in a §4.4.) The spread rate trends and magni-

tudes are qualitatively similar to those obtained in the

experiment. 30 Another study 32 examined concurrent flow

flame spread over a thin fuel in a normal gravity horizon-

tal wind tunnel at higher speed (>35 cm/s). After igni-

tion, the flames would grow and eventually reach a steady

state. Consistent with the theoretical results shown in

fig. 19a, in ref. 32, the flame spread rate increased

monotonically with forced velocity, in the velocity range

less than 1 m/s. At high velocity (>i m/s), however, the

spread rate became constant as the flow velocity was

increased.

In fig. 19b, the maximum flame temperature, normalized

by adiabatic flame temperature, is plotted. Near the

quench limit (at low velocities) the maximum temperature

drops off dramatically. This is a result of the increased

relative importance of heat loss for these small flames.

The rate of heat loss becomes a significant percentage of
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the combustion heat release rate. The resulting drop in

flame temperature corresponds to the decrease in spread

rate, as the heat flux to the fuel is reduced.

4.3.2. Parametric Comparison of Flame Structure

In order to demonstrate the effect of oxygen and flow

velocity on flame structure, two sets of cases will be

presented, one at constant oxygen level and the other at

constant velocity.

In fig. 20, reactivity contours are shown in non-

dimensional coordinates. The oxygen concentration is held

at 15% and the flow velocity is varied from 2.7 to 15.5

cm/s. The flame becomes longer as velocity increases. The

flame strength also increases. This is evident in the

larger size of the highest reactivity zone. Also, at

higher velocity, the reactivity contours tend to bend back

toward the fuel downstream, indicating increased flame

strength.*

The visible flame can be defined as the region

enclosed by a reactivity contour (10 -4 g/cm3/s is assumed

in this work). For the simple reaction scheme in this

model, the rate of fuel reaction is the best measure of how

the flame appears. Based on these contours, then, the

*The flame strength can be quantified as the area of

the reactivity contours. This is a measure of the total

heat release.
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flame aspect ratio (i.e., the length to width ratio)

changes dramatically with velocity. Additionally, the

maximum reactivity is always located very near the burnout

point, which is the most upstream part of the flame and

sees the oxygen first.

In fig. 21, the same flames are presented in dimen-

sional coordinates. This plot demonstrates that flame

length is greatly affected by velocity. In ref. 32, the

flame length is reported to decrease with an increase in

flow velocity (when U--_ is between 0.35 and I m/s) before

leveling off at high velocity (greater than 1 m/s) . While

contrary to the predicted results, this may be an effect

evident only at higher velocities.

The effect of different oxygen concentrations at a

fixed free stream velocity is shown in fig. 22. The flame

length decreases slightly with oxygen. Again, the flames

at higher oxygen are stronger based on the fact that they

are bigger and tend to curve back toward the fuel down-

stream. In fig. 23, the flames are shown in dimensional

coordinates. The difference between fig. 22 and fig. 23 is

small because the relative velocity does not change to much

for the different cases. Hence, the thermal lengths are

approximately equal.

4.3.3. Flame Stand-off Distance and Thickness

When the flame thickness and stand-off distance are
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defined as shown in fig. 24, a comparison can be made.

Fig. 24 presents both dimensional and nondimensional

results. Looking at part (a) first, the dimensional flame

stand-off distance and thickness increase with decreasing

flow velocity except very near the quenching extinction

limit. This is explained as follows. Initially, as the

flow velocity is reduced, the flame moves away from the

fuel and thickens, as it tries to move closer to the region

of fresh oxidizer. As the flame moves away, the heat flux

to the solid diminishes, leading to a decrease in the rate

of pyrolysis. This makes the flame shorter and increases

the relative importance of heat loss, hence cooling the

flame. When the flame dimensions become the same order as

the thermal length, two-dimensional heat conduction loss

becomes important, further decreasing the flame tempera-

ture.* When this heat conduction loss becomes important,

the flame forsakes the search for more oxygen and actually

moves back toward the fuel in an attempt to maximize the

ratio of heat flux to the solid to heat loss to the

environment.

In fig. 24b, the dimensional flame stand-off distance

increases monotonically with oxygen percentage. This is

due to the increase in flame temperature with oxygen

*In a three-dimensional problem, the conductive loss

in all three dimensions would become important.
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percentage. At higher oxygen, the flame simply does not

have to get as close to the fuel because it is hotter. The

burning rate is also higher, pushing the flame farther from

the fuel. The flame is thinner at higher oxygen percentage

because the mass diffusion driving potential is higher.

Ultimately, the flame goes out as the oxygen percentage is

reduced through the finite-rate chemical reaction term.

The extinction mechanisms will be described in §4.4.

4.3.4. Solid Phase Parametric Results

The characteristics of the solid fuel are compared in

fig. 25 which shows the effect of varying forced flow

velocity on solid temperature and incident heat flux. In

part (a), the surface temperature plots indicate that the

maximum always occurs at the burnout point, as expected.

Furthermore, the maximum increases as the flow velocity

increases. This is due to the fact that the flame is

pressed closer to the fuel at high velocities, increasing

the heat flux and thus increasing the temperature. The

heat flux profiles are shown in part (b). The increase in

maximum heat flux due to increasing flow velocity is shown.

Note the sharp bend in the curves. The point where the

bend occurs indicates the end of the pyrolysis region. In

general, as flow velocity is decreased, the heat flux,

solid temperature, and pyrolysis length decrease. For the

lowest-energy flames in this work (i.e. low fuel consump-
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tion rate or spread rate), the pyrolysis region begins to

approach point source behavior, as quenching extinction is

neared (described in §4.4).

The heat flux in all cases varies approximately as _n,

where n=-i/2 in the pyrolysis region, and n=-I in the

preheat region.* Considering a non-reacting boundary layer

with heat transfer, for an isothermal plate, _-i/2 This

is approximately given in the pyrolysis region. In

general, if the appropriate temperature difference in the

boundary layer is specified as (Tg-Tw)~_ m, then qw--X m-I/2

Thus, if m=-i/2, the heat flux to the solid in the preheat

region for this problem is reasonable.

In fig. 26, similar results are plotted to demonstrate

the effect of varying oxygen percentage at fixed free

stream velocity. Again, the pyrolysis length is clearly

shown by the bend in the heat flux curves. The solid

temperature, heat flux, and pyrolysis length, decrease with

decreasing oxygen percentage. (In fig. 26b, the curve at

21% 02 has a small kink right at the elliptic/parabolic

interface, 3=40 cm. This is a manifestation of the

difference between the equations in the two domains.)

4.3.5. Definition of Various Length Scales

The definition of pyrolysis length is somewhat

*The actual exponents are closer to n=-0.43 in the

pyrolysis region and n=-l.l in the preheat region.
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arbitrary. In an experiment, the pyrolysis front may be

determined as the point where blackening of the paper first

occurs. 32 In a theoretical model, the pyrolysis front is

often described as the point where a certain percentage of

fuel remains. In this work, the pyrolysis front was chosen

as the point where 99.9% of the fuel remains. It turns out

that for all cases, this specification corresponds very

closely to the bend in the heat flux curves (seen in fig.

26, for example).

Another length scale of interest in the solid phase is

the preheat length, which is the distance required for the

fuel to heat up to the temperature at which pyrolysis first

occurs. In this work, the definition of preheat length is

based on the heat flux to the solid, as follows. The heat

flux at the end of pyrolysis is found. The preheat length

is defined as the point from the end of pyrolysis to the

point where the heat flux has dropped by a factor of ten.

Finally, the flame length is defined as the length of

the visible flame, which was defined earlier as the region

bounded by the fuel reactivity contour of 10 -4 g/cm3/s.

The results are summarized in fig. 27. The pyrolysis,

flame and preheat lengths all vary linearly with flow

velocity and oxygen concentration.

4.4. Extinction Boundary

One of the main goals of this work was to determine



94

I

o

m

[ _ f ' I I I I i i I i i i i I I I I I I I T I I ] I I r i

0 t.,") 0 a"3 O

(w_) _uo_s!cl

0

I I P w I r I I I I I I

0 0 0 0 0 0
(..0 _ _ r.o OW ,..-

(wo) _0uo_s!Cl

0

c
0

C_

c

C
"- 0

0

C
(D

_" C_

8>,x
o 0

x

(..)

M----
LJ

..Q

0
o

E_

f_u_
0

".4-.--

0

_4
c--

C

j____

0

c-
©

(-_

-0
C
0

I__TM

O9

CO

0

>,,
Q_

i____

E

La_

C',d

°__

L



95

the extinction characteristics of this flame spread

problem. Work done in the past has demonstrated that

flames in very low speed flows will eventually go out since

they become weakened due to heat loss (see ref. 20, for

example). This mode of extinction is called quenching.

Another more familiar mode of extinction, called blowoff,

occurs when the flow velocity becomes too high. The

chemical reactions are too slow compared to the rate of

incoming oxidizer, so the flame cannot be stabilized and is

blown off.

At normal gravity, there is a limit to how small the

velocity of oxidizer into the flame zone can be. This is

due to buoyancy, which sets up flow velocities on the order

of several tens of centimeters per second. At first, our

experience with blowoff in normal gravity suggests that if

we first removed buoyancy, then reduced the flow velocities

to arbitrarily small values, the flame would always exist.

This is because the chemical reactions have relatively more

and more time to proceed at the lower flow speeds. What

actually happens is that the reduced flow of oxidizer

diminishes the overall power of the flame in that heat

losses (due to radiative loss, for example) drop the flame

temperature below the point that the reaction can be

sustained. This is the quenching extinction mechanism.

In fig. 28, the extinction boundary is presented. The
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40 circles represent flame solutions, and the 9 X's show

the extinction points. The two extinction branches,

quenching and blowoff, are shown. In obtaining the

extinction points, care was taken to make small changes in

velocity or mole fraction. In a steady model such as this,

there is always a possibility that the extinction point is

actually a non-convergence point. By making small changes

in the parameters, however, it is possible to get arbi-

trarily close to the actual extinction boundary.

In fig. 28, a logarithmic scale is used to plot free

stream velocity so that detail at low velocity is evident.

A plot using a regular scale is given in fig. 29. The

quenching and blowoff branches have dramatically different

slopes on this scale.

4.4.1. Differences Between Blowoff and Quenching

The blowoff and quenching branches have different

characteristics. While the equations used are steady, some

indication of an unsteady time response is obtained by

looking at the results during iteration." The blowoff

phenomenon is indicated in fig. 30. The qualitative,

temporal response is correct. Here, the top view shows

reactivity contours for a converged flame near the blowoff

boundary. As the blowoff boundary is crossed (by increas-

*Underrelaxation is employed, so the iteration number

is not exactly proportional to time.
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ing velocity or decreasing oxygen concentration) the

sequence of plots show that the flame is unable to stabi-

lize and is blown downstream. In the second view, the

flame starts to lift off at x=0. This flame is actually

stronger (based on increased area of reactivity contours)

than the one above it, due to the penetration of oxygen

beneath the flame. The remaining views show the flame

getting weaker and moving farther downstream. Eventually,

the flame is blown out.

In contrast, quenching extinction is observed to be

very different. If the quenching boundary is crossed (by

decreasing velocity or oxygen concentration) the flame

always remains firmly anchored to the burnout point (x=0)

but merely gets weaker and smaller until it disappears

entirely.

There are other clues indicating the different nature

of the two extinction modes. Comparing a near quenching

and near blowoff flame, fig. 31 depicts the isotherm

structure and maximum temperature. At 2.7 cm/s, the flame

has its maximum temperature slightly upstream of the

burnout point. At 15.5 cm/s, the maximum temperature is

blown downstream somewhat. The effect is even more

dramatic in nondimensional coordinates: the maximum occurs
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over five thermal lengths downstream of the burnout point. *

To get a better understanding of the overall flamma-

bility boundary, fig. 32 presents maximum temperature and

spread rate for points on the boundary. The inset shows

the boundary and the points used. The maximum temperatures

on the quenching branch are quite low. Furthermore, it

appears that a near-limit flame will tolerate a larger

reduction in temperature at higher oxygen concentrations.

At blowoff, the maximum temperature is a healthy percentage

of the adiabatic flame temperature. Quenching extinction,

on the other hand, is ultimately due to weakened chemical

kinetics through flame temperature reduction, t

In both blowoff and quenching extinction, the flame

eventually goes out due to weakened chemical kinetics. In

the nondimensional expression for reaction rate, given by

eq. (33), the Damkohler number, Da, appears. As described

earlier, Da is the ratio of the characteristic flow time to

the characteristic chemical reaction time, in one thermal

length. At blowoff, the reaction does not have time to

proceed because of the high flow velocity. In this case,

_However, in all cases, the maximum reactivity occurs

very near the burnout point.

tSince chemical kinetics play an important role in

quenching extinction, predicting the boundary more accu-

rately requires a better reaction scheme. However, we are

confident that the simplified chemistry used here is

adequate to capture the essential features of the problem.
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Da becomes too small. At quenching, Da is large, but the

reduced flame temperature due to heat loss slows the

reaction rate. Thus, while the mechanisms are quite

different, the flame goes out in either case as a result of

the finite-rate reaction.

There are other characteristics of the near blowoff

(high velocity) flames. In fig. 33, two effects are shown.

First, look at the reactivity contours near the fuel in the

region from x=0 to x=3. These contours are distorted due

to the large flux of pyrolysis products. The concentration

is so large that the reaction rate is noticeably enhanced.

Second, follow the YF=0.001 contour from small to large x-

values. At first, the line indicates that some fuel has

escaped the reaction zone since it lies outside the

indicated reactivity contours. Eventually, the fuel is

blown back into the flame where it is consumed. This

effect is also seen to a lesser extent in the YF=0.01

contour.

4.4.2. Incomplete Combustion

Another interesting aspect relates to the flux of fuel

in the x-direction as a function of x. In fig. 34, fuel

flux (normalized by the total burning rate) is plotted for

all cases at 15% 02 . Looking at an individual profile, the

flux of fuel is incremented by the flow of pyrolysis gases

from the solid. At the same time, the flame consumes the
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fuel and eventually leads to a drop in fuel flux. Finally,

the reaction ceases and an amount of fuel escapes from the

flame unreacted. This "escaped fuel" or (incomplete

combustion) is plotted in the inset. As quenching is

approached, the amount of escaped fuel increases dramati-

cally. There are three reasons the escaped fuel increases

near quenching. First, the relatively cool fuel plate

quenches the gas phase reaction near the plate. Second,

the radiative heat loss from the solid fuel leads to

reduced gas phase temperature. Third, the short flames

simply permit an increased amount of fuel to escape. This

is based on simple geometric considerations, namely, the

flame length shrinks to about the same order as the flame

stand-off distance.

As a final word, blowoff at higher oxygen levels was

not searched for in this work. There are three reasons.

First, this work was mainly interested in low speed

quenching effects. Second, flames at high velocity eventu-

ally become turbulent, making this laminar model inade-

quate. Third, in some cases, a near-blowoff flame can

become side stabilized. The flame retreats downstream of

the burnout point, where the velocity is lower. After

burning through the fuel at this location, it retreats

again, and repeats the cycle. Clearly, this steady model

is insufficient in this case.



Conclusions

A numerical model of concurrent flow flame spread over

a thin fuel has been formulated. The effect of oxygen

concentration and forced flow velocity on flame structure

and extinction limits in a zero gravity environment has

been found.

The governing equations included the steady, laminar,

two-dimensional, fully elliptic conservation equations for

momentum, energy, and species. To capture the long flame

and preheat zone without using an elliptic formulation

everywhere, parabolic equations were solved at a point

sufficiently downstream from the leading edge region. The

parabolic solution provided the boundary condition for the

elliptic equations, minimizing the effect of the transition

between the two sets of equations.

To get a steady solution, the coordinate system was

chosen to move with the flame. Thus, the flame was

stationary and the fuel fed in at the rate of flame spread.

The flame structure has been presented in detail.

Contours of temperature, fuel reactivity rate, and equiva-

lence ratio have been compared. The solution of the

Navier-Stokes equations allowed the velocity and pressure

fields to be visualized. Streamlines showed the deflection

of the flow due to the presence of the flame and fuel, as

well as the flow of fuel vapor emanating from the solid due

108
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to pyrolysis. Solution of the solid phase equations gave

the pyrolysis length, the incident heat flux distribution,

and of course the solid temperature.

A comparison was made with experiment, which reported

visible flame shape and spread rate. Since the experimen-

tal data was in many cases still approaching steady state,

only one nearly steady flame was compared. Using a contour

of constant fuel reactivity to represent the visible flame,

the flame shape was predicted quite accurately. The spread

rate was under-predicted by about 20% for the case exam-

ined. No attempt was made to adjust the parameter values

in the model to more closely match the experiment, but

results agreed qualitatively.

An extinction boundary, with flow velocity and oxygen

concentration as coordinates, was presented. It consisted

of two branches, a blowoff branch and a quenching branch.

This type of extinction boundary has been observed experi-

mentally in opposed flow flame spread tests.

The flame went out in different ways depending on

which branch of the extinction boundary was crossed. In

blowoff, the chemical reaction did not have time to proceed

because of the high rate of flow, and the flame was subse-

quently blown downstream. The flame temperature was high

enough to allow the chemical reaction to proceed, however,

it was found that the maximum temperature zone in the flame
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was pushed downstream of the burnout point and higher off

the fuel surface as the blowoff branch was approached.

Therefore, the delayed chemical reaction effectively

reduced the heat flux back to the fuel in the burnout

region. Thus, the required amount of fuel vapors needed to

stabilize the flame could not be generated, and the flame

was eventually blown downstream.

As the quenching branch was approached, on the other

hand, the flame was always firmly stabilized at'the burnout

point. Furthermore, the maximum temperature in the flame

always occurred very near the burnout point. Thus, the

chemistry had plenty of time to proceed. However, the

maximum flame temperature decreased steadily as the

quenching branch was neared. This was due to the increased

importance of heat loss (radiation from the solid fuel) as

the visible flame size and power output (equivalently,

spread rate) were reduced. The flame was quenched when the

temperature became too low to sustain combustion. Addi-

tionally, flames near the quench limit permitted an

increased percentage of fuel vapors to escape unreacted, an

indication of the relatively low flame temperatures and

short flames.

By looking at cases which go to extinction during

iteration, an indication of the unsteady time response of

the flame could be obtained, even though the model was for
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steady solution. These results showed that blowoff was

characterized by the flame being de-stabilized and pushed

downstream, while quenching was due to the gas phase flame

becoming cooler and cooler.

The theoretical

oxygen concentration,

quenching to blowoff

results are compared. At constant

the effect of flow velocity from

was presented. At constant free

stream velocity, the effect of different oxygen levels,

from 21% (air) all the way down to the extinction limit,

was shown. Flame length, pyrolysis length, preheat length,

and spread rate increased approximately linearly with both

free stream velocity and oxygen concentration. The maximum

temperature in the gas phase decreased as flow velocity was

reduced, and dropped off steeply as the quenching branch

was approached.

From one case to another, the solid temperature and

incident heat flux profiles had similar shapes. Pyrolysis

and preheat regions were identifiable. The biggest differ-

ence was that the maximum temperature and incident heat

flux (which always occurred right at the burnout point) in-

creased with flow velocity and oxygen percentage.

This model provides a powerful tool in examining flame

spread and extinction characteristics. It is a solid base

upon which further modifications can be made. Eventually,

it will be generalized to consider unsteady flame spread
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over more common (thicker) fuels.

Other issues worth considering include the following.

Gas phase radiation should be included to get a better

gauge of its effect on flame spread, structure, and

extinction (as a heat loss mechanism). An improved gas

phase chemical reaction formulation is needed to model the

low temperatures near quenching, where intermediate species

could be important. The presence of soot will have an

influence on both the gas phase chemistry and radiation.

Finally, the solid fuel model should be improved to more

realistically predict the rate and type of pyrolysis

products being generated.
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Appendix

The FORTRAN computer program used to generate these

results follows. In addition, the important parameter

values (read in unit I0 in the program) are listed below:

1 1 1 1 1 1 1 1

4 4 4 4 4 0 1

1 0 3 4 0

69 49 26 I.i000 I.I000 0.2000 0.2000 3.0000 3.0000

150 1 1 -0.0001 -0.0002 -0.0001 -0.0001 -1.0000 -0.0012

7 00000E-01 9.00000E-01 6.50000E-01 6.50000E-01

6

1

1

2

3

9

70 20

0 1

30 5

50000E-01 6.50000E-01 6.50000E-01 3.80000E+07 5.03000E+01

00000E+00 4.16667E+00 9.25485E+08 4.04000E+01 4.53000E+01

18500E+00 2.10000E-01 2.00000E+00 2.38254E-01 1.00000E+00

75000E-04 2.63000E-01 3.00000E-01 3.30000E-01 1.35600E-12

00000E+02 3.00000E+02 -1.80000E+02 3.80000E-03 2.13000E+00

09000E-01 1.00000E+00 3.00000E+01 1.00000E+00 0.00000E+00

65 1.1000 3.0000 30.0000

65 0.0000 2.0000

1
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PROGRAM FLAME

COMMON/L1/DX (0 :93), DY (0 :50), NX, NY, NLE

COMMON/L2/U (0 :93, 0 :50) ,V (0: 93, 0 :50) ,T (0 :93, 0: 50, i: 3) ,

- R(0 :93, 0 :50), P (0 :93, 0: 50) ,PPR (0 :93, 0 :50)

COMMON/L3/UHAT (0 :93,0 :50) ,DU(0 :93, 0:50) ,USTAR(0 :93, 0:50),

- UAP (93, 50) ,UAE (93, 50), UAW (93,50),

- UAN (93, 50) ,UAS (93, 50), UB (93, 50), GRASH, RINFNON

COMMON/L4/VHAT (0: 93, 0 :50) ,DV (0 :93, 0: 50), VSTAR (0 :93, 0 :50),

- YAP (93, 50) ,VAE (93, 50) ,VAW (93, 50),

- VAN (93, 50) ,VAS (93, 50) ,VB (93, 50)

COMMON/L5/AP (93, 50) ,AE (93, 50) ,AW (93, 50) ,AN (93, 50),

- AS (93, 50), SC (93,50) , SP (93, 50), B (93, 50)

COMMON/L6/AA (0 :93), BB (0 :93) ,CC (0 :93), DD (0 :93), XX (0 :93)

COMMON/L7/RSTAR, RS, CS, CP, SIG, T0, TL, XL, ES, TAU, ASTAR, TSTAR

COMMON/L8/DXP (0: 500) ,DYP (0: I00), UPAR(2,0: i00) ,VPAR (2,0 :i00),

- TPAR (2, 0 :i00, 3), TS (0 :570, 2), USPAR (0 :570) ,VSPAI%(0 :570)

COMMON/Lg/IBC,UBC (0 :50) ,VBC (0 :50), TBC (0 :50, 3)

REAL RX, RY, DXMIN, DYMIN, DXMAX, DYMAX, TAMB, DA, Q, E, PR, FO, YOAMB,
-ERM, ERP, ERU, ERV, ERPP, ERF, PDAM, UDAM, VDAM, FDAM (3) ,VEL, TOVI (0:570) ,

-POLD (0 :93, 0 :50), PH (2) ,MAINPDIF, THICK (0 :570), DAD,VE0,VF, EPS,

-ASW, VFINI, QO, QN, QOL, QNL, GLEVEL, GRASH, RINFNON, UBUOY
C ....... GET GENERAL DATA

READ (i0,910) IPC, IUC, IVC, IPPC, ITC, IYFC, IYOC, IOUV

READ (10,910) IBP, IBU, IBV, IBPP,IBF, IUSTVST, IDA

READ (10,910) ITSSMOO, ISBC, JSK, KSOL, ISKPP

READ (10, 900 ) NX, NY, NLE, RX, RY, DXMIN, DYMIN, DXMAX, DYMAX

READ (i0,900) NALL, IREADOLD, NSCH, ERM, ERP, ERU, ERV, ERPP, ERF

READ (I0,905) PR, PDAM, UDAM,VDAM

READ(10,905) FDAM(1),FDAM(2),FDAM(3),ASW, ES

READ(10,905) TAMB, TSTAR, DAD, Q,E

READ(10,905) FO, XOAMB, VE0,VF, EPS

READ(10,905) RSTAR, RS,CS,CP,SIG

READ (10,905) T0,TL, XL, TAU,ASTAR

READ (10,905 ) QO, QN, QOL, QNL, GLEVEL

READ (I0,900) IBEG, JTOP, IRIGHT, RDXP, DXPMIN, DXPMAX

READ (10,900) ISKIP,ISR, IPARN, VFLI,VFUI

READ (i0,900) MMAX,KPAR, IBC
YOAMB=I. / (i. + (I./XOAMB-I. ) *0. 8754513)

C ....................... GENERATE GRID

CALL GRID (RX, RY, DXMIN, DYMIN, DXMAX, DYMAX)
C ........... GENERATE INITIAL FIELD

CALL READIN (TAMB, YOAMB, TSTAR, IREADOLD, IUSTVST, ISK, IBEG, IRIGHT)
C ................... TAILOR INITIAL SURFACE TEMPERATURE DATA

IF (ISR.EQ.I) THEN

IF (IRIGHT.GT.IPARN) IRIGHT=IPARN

IF (IRIGHT.LT. IPARN) THEN

DO 3 I=IBEG+IRIGHT+I,IBEG+IPARN

TS (I, i) =TS (IBEG+IRIGHT, i)

3 TS (I, 2) =TS (IBEG+IRIGHT, 2)

IRIGHT=IPARN

ENDIF

DO 4 J=NLE+I,IBEG+IRIGHT
***************************************************************

C** NOTE!!! THE FOLLOWING LINE ASSUMES EQU. OF STATE **

************************* RHO=TSTAR/T ***********************

4 VSPAR (J) =EXP (-ES/TS (J, l) ) *ASW*RS/TSTAR*TS (J, i) /RSTAR/

- (VE 0+UBUOY-VF )
ENDIF
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c .... NOTE: IT IS IMPORTANT THAT IBEG+IRIGHT>=NX+I

C ........ MAIN ROUTINE ........

NF=0

NG=0

IPAR=0

IOKO=0

VFRI =VF

QORI =QO

UBUOY = (ASTAR* 981. *GLEVEL) ** (i./3. )
C***************** THE FOLLOWING LINE ASSUMES AN EQUATION OF STATE ***

RINFNON=T STAR /TAMB

VEL=VE 0 +UBUOY-VF

DA=DAD/VEL/VEL

GRASH= (UBUOY/VEL) * * 3.

CHERPP=0.04

IF (ERPP.EQ.-I.) CHERPP=0.

CHQO=0.

IF (QN.EQ.I.) CHQO=I.

DO 200 I=I,NALL
VEL=VE0+UBUOY-VF

DA=DAD /VEL/VEL

GRASH= (UBUOY/VEL) ** 3.

IF (IOUV.EQ.0) GO TO 5
CALL OLDS (POLD,P,NX,NY)

C ......... CALCULATE UHATS AND VHATS

CALL UHATS (PR, TSTAR)

CALL VHATS (PR, TSTAR)
C ................ SOLVE FOR THE PRESSURE FIELD

5 DO I0 K=I,IPC

i0 CALL PRESSURE (ERP, PDAM, IBP)
C .................. CALCULATE USTAR AND VSTAR

DO 20 K=I,IUC

20 CALL USTARS (ERU, UDAM, IBU, PR, TSTAR)

DO 30 K=I,IVC

30 CALL VSTARS (ERV,VDAM, IBV, PR, TSTAR)
C .................... SOLVE THE P' EQUATION

DO 40 K=I,IPPC

CALL PPRIME(ERPP,IBPP,ISKPP)
C ..................... CORRECT VELOCITY--

40 CALL CORVEL (PR, TSTAR)
C .......... COMPUTE OXYGEN CONCENTRATION FIELD

DO 50 K=I,IYOC

50 CALL PHI (TAMB, DA, Q, E, FO, ERF, FDAM, 3, TSTAR, IBF)
C ................ COMPUTE FUEL CONCENTRATION FIELD

DO 60 K=I,IYFC

60 CALL PHI (TAMB, DA, Q, E, FO, ERF, FDAM, 2, TSTAR, IBF)

C .................. COMPUTE TEMPERATURE, DENSITY ........................

DO 70 K=I,ITC

CALL PHI (TAMB, DA, Q, E, FO, ERF, FDAM, 1, TSTAR, IBF)

70 CALL DENS (TSTAR)
C ......................... SET UP GRID AND INITIAL PARABOLIC VALUES ....

IF ((IOKO.NE.I/KPAR) .OR.I.EQ.I) THEN

IF (IBEG.GT.NX+I.OR. IRIGHT.LE.0) THEN

DO 80 I4=NLE+I,NX+I

TS (I4, i) =T (I4, 0, I)

80 TS (I4,2) =T (I4,1, i)
ELSE

CALL PARGRID (NF, IBEG, JTOP, IRIGHT, RDXP, DXPMIN, DXPMAX)



120

IF (NG.EQ.I) GO TO 83

NG = 1

CALL SETSUR (IBEG, JTOP, IRIGHT, ES,ASW, RS, TSTAR, RSTAR, VF, VEL, ISR)

83 IF (I.EQ.NALL) IPAR=I
ENDIF

ENDIF

IF ((IOKO.NE.I/KPAR).OR.I.EQ.1) THEN
C .................. COMPUTE SOLID TEMPERATURE AND THICKNESS

IF (NSCH.EQ.I) THEN

DO 87 IK=NLE+I, I BEG

87 TS (IK, 2) =T (IK, i, I)

DO 90 IK=NLE+I,IBEG+IKIGHT

90 TOVI (IK) =TS (IK, i)
VFINI=VF

ZZZ--0.

VFLzVFLI

VFU=VFUI

CALL SOLID (EPS, VFL, VFU, VF, VE0, UBUOY,

- THICK, ZZZ, TX, QO, QN, ASW, IBEG, IRIGHT, MMAX, KSOL)

DO i00 J=NLE+I,IBEG+IRIGHT

I00 TS (J, I) = (QNL*TS (J, i) +QOL*TOVI (J)) / (QNL+QOL)
IF (ITSSMOO.NE.0) THEN

DO 102 J=NLE+2,IBEG+IKIGHT

102 IF (TS (J, i) .GT.TS (J-l, i) )
ENDIF

C) ) ) ) ) ) ) ) COMPUTE SPREAD RATE
XINTVF=0.

DO 103 L=NLE+I, IBEG+IRIGHT-I

IF (L.LT.IBEG) DDX=DX(L)

IF (L.EQ. (NLE+I)) DDX=DX (L) /2.

IF (L.GE. IBEG) DDX=DXP (L-IBEG+I)

C---NOTE: THE INTEGRAL BELOW ASSUMES SQRT(I+(DH/DX)**2) = 1

103 XINTVF=XINTVF+DDX*EXP (-ES/TS (L, 1 ) )

XINTVF=ASW/TAU*ASTAR/(VE0+UBUOY-VF) *XINTVF

QO=QO*XINTVF/VF*CHQO+QO* (i. -CHQO)

WRITE (56,104) VF, XINTVF

VF= (QNL*VF+QOL*VFINI) / (QNL+QOL)

104 FORMAT (IP, 2E12.5)
C ............ CALCULATE BLOWING VELOCITY ......

DO 105 J=NLE+I,IBEG+IRIGHT

***************************************************************

C******** NOTE!!! THE FOLLOWING LINE ASSUMES EQU. OF STATE **
************************* RBO=TSTAR/T ***********************

105 VSPAR (J)=EXP (-ES/TS (J, i) )*ASW*RS/TSTAR*TS (J, 1 ) /KSTAR/
- (VE 0+UBUOY-VF )

VSPAR (NLE+I) =VSPAR (NLE+I)/2.

C ................... SET B.C. FOR SOLID FUEL

IF (ISBC.EQ.0) THEN

TS (IBEG+IRIGHT, 1 )=TS (IBEG+ IEIGHT-I, 1 )

ELSE

TS (IBEG+IRIGHT, I) =i.
ENDIF

IF (ZZZ.EQ.I.) GOTO 210
ENDIF

IF (JSK.EQ.0) GO TO 185
C ................... SOLVE PARABOLIC REGION

IF (IBEG. LE.NX+I .AND. IRIGHT. GT. 0)

- CALL PARCA (IBEG, JTOP, IRIGHT, PR, TSTAR, GR, RINFNON, DA, Q, E, FO,

TS (J, I) =TS (J-l, I)

BY INTEGRATING MASS FLUX ( ( ( (
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- IPAR,IDA,VEL,RSTAR,ASTAR)
C.................. CORRECTBOUNDARYCONDITIONSFORU-VELOCITY.........

DOii0 II=NLE+I,IBEG-I
VMEAN=(VSPAR(II)*DX(II) +VSPAR(II+l) *DX(II+l)) / (DX (II) +DX (II+l))

DHDX= (THICK (II+l) -THICK (II)) / (DX (II+l) +DX (II)) *2.

DHQ=DHDX/SQRT (I. +DHDX*DHDX)

110 USPAR (I I )=-VF/(VE0+UBUOY-VF) -DHQ*VMEAN

DO 120 II=IBEG, IBEG+IRIGHT-I

VMEAN=VS PAR (I I )

IF ((II.EQ.IBEG) .AND. (IBEG.EQ.NX+I)) THEN

DXL=DX (NX)/2.

DXU=DXP (1 )
GOTO 112

ENDIF

IF (II.EQ.IBEG) THEN
DXL=DX (IBEG) /2.

DXU=DXP (1 )
ELSE

DXL=DXP (I I-IBEG)
DXU=DXP (I I-IBEG+I )

ENDIF

112 RREP=DXL/(DXL+DXU)

DHDX = (THICK (II+l) -THICK (II))/DXU*RREP+

- (THICK (II) -THICK (II-l)) /DXL* (I .-RREP)

DHQ=DHDX/SQRT (1. +DHDX*DHDX)

120 USPAR (I I )=-VF / (VE 0+UBUOY-VF )-DHQ*VMEAN

USPAR (IBEG+IRIGHT) =USPAR (IBEG+IRIGHT-I)
II=NLE

VMEAN=VSPAR (II+l)
DHDX= (THICK (II+2) -THICK (II+l)) / (DX (II+2) +DX (II+l)) *2.

DHQ=DHDX/SQRT (1. +DHDX*DHDX)

USPAR (I I )=-VF / (VE0+UBUOY-VF) -DHQ*VMEAN
C ..................... UPDATE ELLIPTIC SURFACE VARIABLES

IF (NSCH.NE.I) GO TO 155

DO 130 II=NLE+I,NX+I

T (II, 0, I) =TS (II, I)

130 V(II,0)=VSPAR(II)

DO 140 II=NLE+I,IBEG-I

140 U(II,0)=USPAR(II)

U (NLE, 0 )= US PAR (NLE)

DO 150 II=IBEG, NX

RRI=DX (II+l) / (DX (II) +DX (II+l))

150 U(II, 0) =USPAR(II) *RRI+USPAR (II+l) * (I .-RRI)
155 CONTINUE

ENDIF

IOKO=I/KPAR

C ............... UPDATE LEFT AND TOP VELOCITIES

DO 170 II=0,NX

170 U (I I, NY+ 1 )= (VE 0-VF ) / (VE 0 +UBUOY-VF )

DO 180 JJ=0,NY+I

180 U (0, JJ) = (VE0-VF) / (VE0+UBUOY-VF)

185 IF (ISKIP.NE.0) GO TO 200

CALL FINDDIF (P, POLD, NX, N-Y,MAINPDIF," P, MAIN IT. ', IDP, JDP)
PH (i) =PH (2)

PH (2) =ABS (MAINPDIF)

IF(PH(2).GT.PH(1)) THEN
ICOUNT=ICOUNT+I
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ELSE

ICOUNT=0

ENDIF

IF ((ICOUNT.GE.10).AND.(PH(1).GT.0.1)) GO TO 210

C ................ FIND LARGEST, SMALLEST P PRIME

PPMAXs-100000.

PPMIN=+100000.

DO 190 I2=I,NX

DO 190 J2=I,NY

IF (PPR(I2,J2).GT.PPMAX) THEN
PPMAX=PP R (I2, J2 )

IDMA=I2

JDMA=J2

ENDIF

IF (PPR(I2,J2).LT.PPMIN) THEN

PPMIN=PPR (I2, J2)
IDMI=I2

JDMI =J2

ENDIF

190 CONTINUE

WRITE (22,915) PPMAX, IDMA, JDMA, PPMIN, IDMI, JDMI, (PPMAX-PPMIN)

IF ((PPMAX-PPMIN) .LT.CHERPP) GO TO 210

200 IF (ABS(MAINPDIF) .LT.ERM) GO TO 210

C ................ WRITE DATA-

210 CONTINUE

CALL WRITE3 (T, 0, NX+I, 0, NY+I, 2 )

CALL WRITE2(U, 0,NX,0,NY+I,2)
CALL WRITE2(V, 0,NX+I,0,NY, 2)

CALL WRITE2(P,1,NX,1,NY,2)

CALL WRITE2(PPR, I,NX,1,NY,2)

CALL WRITE2 (USTAR, 0,NX, 0,NY+I,2)

CALL WRITE2 (VSTAR, 0, NX+I, 0, NY, 2 )

CALL WRITE4 (TS, NLE+I, IBEG+IRIGHT, 1,2,2)

WRITE (13,905) (UBC (J) , J=l, NY)

WRITE (13,905) (VBC (J), J=l, NY)

WRITE (13,905) (TBC (J, 1), J=l, NY)

WRITE (13,905) (TBC (J, 2), J=l, NY)

WRITE(13,9057 (TBC(J,3),J=I,NY)
CALL WRITE1 (THICK, TX,NLE+I, IBEG+IRIGHT, 2)

IF (IDA.EQ. i) THEN

C ................ TO SAVE SPACE, DA DATA WRITTEN TO PPR.

PREF=DA*VEL*VEL* RS TAR/AS TAR

DO 220 I=0,NX+I
DO 220 J=0,NY+I

PPR(I,J)=PREF*R(I,J)*R(I,J)*T(I,J, 2)*T(I,J,3)*EXP(-E/T(I,J,I) )

IF (PPR(I,J).LT.1.E-78) PPR(I,J)=0.
CONTINUE

DO 230 I=0,NX+I
WRITE(26,905) (PPR(I,J),J=0,NY+I)

ENDIF

220

230

C

CLOSE (UNIT=I0)

OPEN (UNIT=f0)

IF (ZZZ.EQ.I.) VF=VFRI
IF (ZZZ.EQ.I.) QO=QORI

C ........ REWRITE GENERAL DATA

WRITE(10,910) IPC, IUC, IVC, IPPC, ITC, IYFC, IYOC, IOUV

WRITE (10,910) IBP, IBU, IBV, IBPP, IBF, IUSTVST,IDA



123

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

C
C ..........

C

240

250

C

9O0

905

910

915

920

i0

20

30

(I0,910)

(10,900)

(10,900)

(10,905)
(10,905)

(10,905)

(10,905)

(10,905)

(10,905)

(10,905)

(10,900)

(10,900)

(10,900)

ITSSMOO, ISBC, JSK, KSOL, ISKPP

NX, NY, NLE, RX, RY, DXMIN, DYMIN, DXMAX, DYMAX

NALL, IREADOLD, NSCH, ERM, ERP, ERU, ERV, ERPP, ERF

PR, PDAM, UDAM, VDAM

FDAM (1 ) ,FDAM (2 ) ,FDAM (3 ) ,ASW, ES

TAMB, TSTAR, DAD, Q, E

FO, XOAMB, VE0, VF, EPS

RSTAR, RS, CS, CP, SIG

T0, TL, XL, TAU, ASTAR

QO, QN, QOL, QNL, GLEVEL

IBEG, JTOP, IRIGHT, RDXP, DXPMIN, DXPMAX

ISKIP, ISR, IPARN, VFLI, VFUI

MMAX, KPAR, IBC

.CHECK OUT OVERALL MASS BALANCE IN ELLIPTIC REGION

FLXBOT=0.

FLXTOP=0.

FLXRGT=0.

FLXLFT=0.

RINFASTAR=RSTAR*TSTAR*ASTAR

DO 240,I=I,NX

FLXBOT=FLXBOT+V(I,0)*DX(I)/T(I,0,1)*RINFASTAR

FLXTOP=FLXTOP+V(I,NY)*DX(I)/T(I,NY, I)*RINFASTAR

DO 250 J=I,NY

FLXLFT=FLXLFT+U(0,J)*DY(J)/T(0,J,I)*RINFASTAR

FLXRGT=FLXRGT+U(NX, J)*DY(J)/T(NX, J,I)*RINFASTAR

FLXNET=FLXBOT+FLXLFT-FLXTOP-FLXRGT

WRITE (72,*) 'MASS FLUX'

WRITE (72,920)

WRITE (72,905) FLXBOT, FLXTOP, FLXRGT, FLXLFT, FLXNET

FORMAT (3 (IX, I3), 6 (IX, F8.4) )

FORMAT (IP, 5 (IX, El2.5) )

FORMAT (I0 (IX, I3) )

FORMAT (3 (IX, F10.5, IX, I3, IX, I3) )

FORMAT (4X, 'BOTTOM' , 8X, 'TOP' , 9X, 'RIGHT' , 9X, 'LEFT' , 9X, 'NET' )
STOP

END

SUBROUTINE GRID (RX, RY, DXMIN, DYMIN, DXMAX, DYMAX)
COMMON/L1/DX (0 :93), DY (0 :50), NX, NY, NLE

REAL RX, RY, DXMIN, DYMIN, DXMAX, DYMAX
DY (1 )=DYMIN

DX (NLE) =DXMIN

DX (NLE+I) =DXMIN

DO 10 J=2,NY

DY (J) =DY (J-i) *RY

DY (J) =CVIMGT (DY (J), DYMAX, DY (J). LT. DYMAX)
DO 20 IB=I,NLE-I

I=NLE-IB

DX (I) =DX (I+l) *RX

DX (I) =CVMGT (DX (I) ,DXMAX, DX (I) .LT. DXMAX)

DO 30 I=NLE+2,NX

DX (I) =DX (I-l) *RX

DX (I) =CVMGT (DX (I), DXMAX, DX (I). LT. DXMAX)
DX (0) =0.

DY(0)=0.

DX (NX+I) =0.
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- R(0:93,
COMMON/L3/UHAT(0:

- UAP(93,
- UAN(93,
COMMON/L4/VHAT(0:

- VAP(93,

DY(NY+l)=0.
RETURN

END

SUBROUTINE READIN (TAMB, YOAMB, TSTAR, IREADOLD, IUSTVST, ISR,

- IBEG, IRIGHT )

COMMON/L1/DX (0 :93) ,DY (0 :50), NX, NY, NLE

COMMON/L2/U (0 :93, 0 :50) ,V (0 :93, 0 :50) ,T (0 :93, 0 :50,1 :3) ,

0: 50) ,P (0 :93, 0 :50) ,PPR(0 :93, 0 :50)

93, 0:50) ,DU (0 :93, 0: 50), USTAR (0 :93, 0: 50),

50) ,UAE (93, 50) ,UAW (93, 50) ,

50) ,UAS (93, 50) ,UB (93, 50), GRASH, RINFNON

93, 0 :50), DV (0 :93, 0 :50), VSTAR (0 :93, 0 :50),

50) ,VAE (93, 50) ,VAW (93, 50),

- VAN (93, 50) ,VAS (93, 50) ,VB(93,50)

COMMON/LS/DXP (0 :500) ,DYP (0 :i00) ,UPAR(2, 0 :I00) ,VPAR (2,0 :i00),

- TPAR (2, 0: i00,3) ,TS (0 :570,2), USPAR (0 :570) ,VSPAR (0 :570)

COMMON/L9/IBC, UBC (0 :50) ,VBC (0 :50), TBC (0 :50,3)

REAL TAMB, YOAMB, TSTAR
DO 10 M=I,3

DO 10 I=0,NX+I

I0 READ (II, 905) (T (I, J,M), J=0,NY+I)

DO 20 I=0,NX

20 READ (ii, 905) (U (I, J), J=0,NY+I)

DO 30 I=0,NX+I

30 READ (II, 905) (V(I,J),J=0,NY)

DO 40 I=I,NX

40 READ (Ii, 905) (P (I, J) ,J=I,NY)

DO 50 I=I,NX

50 READ (ii, 905) (PPR (I, J), J=l, NY)

DO 52 I=0,NX

52 READ (II, 905) (USTAR(I,J),J=0,NY+I)

DO 54 I=0,NX+I

54 READ(II,905) (VSTAR(I,J),J=0,NY)

IF (ISR.EQ.I) THEN

DO 56 I=NLE+I,IBEG+IRIGHT
56 READ (Ii, 905) (TS (I, J), J=l, 2)

58

6O

ENDIF

IF (IBC.EQ. I)

READ (11,905)
READ (11,905)

READ (11,905)

READ (ll, 905)

READ (ii, 905)

ELSE

DO 58 J=I,NY

UBC (J) =0.

VBC (J) =0.

TBC (J, i) =0.

TBC (J, 2) =0.

TBC (J, 3) =0.
ENDIF

IF (IUSTVST.EQ.I) THEN

DO 60 I=0,NX+I

DO 60 J=0,NY+I

USTAR (I, J) =U (I, J)

VSTAR (I, J) =V (I, J)
CONTINUE

ENDIF

THEN

(UBC (J), J=l, NY)
(VBC (J), J=l, NY)

(TBC (J, 1 ), J=l, NY)

(TBC (J, 2) ,J=l, NY)

(TBC (J, 3), J=l, NY)
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CALLDENS(TSTAR)
C.................... SETB.C. ' S FORYO

DO110 J=0,NY+I
110 T(0, J, 3)=YOAMB

DO120 I=0,NX+I
120 T(I, NY+I,3)_YOAMB

905 FORMAT(1P,5(IX,El2.5))
RETURN
END
SUBROUTINEUHATS(PR,TSTAR)
COMMON/L1/DX(0:93),DY (0 :50), NX, NY, NLE

COMMON/L2/U (0 :93, 0 :50) ,V(0 :93,0: 50) ,T (0 :93,0 : 50,1 : 3),

- R(0 :93, 0 :50) ,P (0: 93, 0: 50) ,PPR(0 :93, 0:50)

COMMON/L3/UHAT (0 :93, 0 :50) ,DU(0 : 93, 0 :50), USTAR (0 :93, 0 :50) ,

- AP (93, 50) ,AE (93, 50), AW (93, 50),

- AN (93, 50), AS (93, 50), B (93, 50), GRASH, RINFNON

REAL PR, TSTAR, FE, FW, FN, FS, TP, TE, TW, TN, TS, GP, GE, GW, GN, GS,

- DE, DW, DN, D S, GVE, GVW, GVN, GV S, SPDXDY,

- TNORTH, TSOUTH, VOLUME
C ....... EVALUATE COEFFICIENTS FOR INTERIOR U-CONTROL VOLUMES

DO I0 I=I,NX-I

DO 10 J=I,NY

FE= R(I+I,J) * (U(I,J)+U(I+I,J) )/2. * DY(J)

FW= R(I,J) * (U(I,J)+U(I-I,J))/2. * DY(J)

FN=(R(I,J+I)*DY(J) + R(I,J)*DY(J+I) )/(DY(J)+DY(J+I))

- * V(I,J) * DX(I)/2.

- +(R(I+I,J+I)*DY(J) + R(I+I,J)*DY(J+I) )/(DY(J)+DY(J+I))

- * V(I+l,J) * DX(I+I)/2.

FS--(R(I,J-I)*DY(J) + R(I,J)*DY(J-I) )/(DY(J)+DY(J-I))

- * V(I,J-l) * DX(I)/2.

- +(R(I+I,J)*DY(J-I) + R(I+I,J-I)*DY(J) )/(DY(J)+DY(J-I))

- * V(I+l,J-l) * DX(I+I)/2.

TP=(T(I,J,I) *DX(I+I) + T(I+I,J,I) *DX(I) )/(DX(I) + DX(I+I))

TE=(T(I+I,J,I)*DX(I+2) + T(I+2,J,I) *DX(I+I))/(DX(I+I)+DX(I+2))

TW=(T(I-I,J,I)*DX(I) + T(I,J,I) *DX(I-I))/(DX(I) + DX(I-I))

TN=(T(I,J+I,I)*DX(I+I) + T(I+I,J+I,I)*DX(I) )/(DX(I) + DX(I+I))

TS=(T(I,J-I,I)*DX(I+I) + T(I+I,J-I,I)*DX(I) )/(DX(I) + DX(I+I))

GP=GAMMAV (TP, PR, TSTAR)

GE=GAMMAV (TE, PR, TSTAR)

GW=GAMMAV (TW, PR, TSTAR)

GN=GAMMAV (TN, PR, TSTAR)

GS=GAMMAV (TS, PR, TSTAR)
DE=2. * GP*GE / (DX(I+I)*GE + DX(I+I)*GP) * DY(J)

DW=2. * GP*GW / (DX(I)*GW + DX(I)*GP ) * DY(J)

DN=2. * GP*GN / (DY(J)*GN + DY(J+I)*GP) * (DX(I)+DX(I+I))/2.

DS=2. * GP*GS / (DY(J)*GS + DY(J-I)*GP) * (DX(I)+DX(I+I))/2.

AE(I,J)=DE*A(ABS(FE/DE)) + AMAXI(-FE,0.)

AW(I,J)=DW*A(ABS(FW/DW)) + AMAXI(FW,0.)

AN(I,J)---DN*A(ABS(FN/DN)) + AMAXI(-FN,0.)

AS(I,J)=DS*A(ABS(FS/DS)) + AMAXI(FS,0.)

TNORTH=( (T(I,J+I,I)+T(I+I,J+I,I))/2. * DY(J)

- +(T(I,J,I) +T(I+I,J,I) )/2. * DY(J+I) )/(DY(J)+DY(J+I))

TSOUTH=( (T(I,J-I,I)+T(I+I,J-I,I))/2. * DY(J)

- +(T(I,J,I) +T(I+I,J,I) )/2. * DY(J-I) )/(DY(J)+DY(J-I))

GVE=GAMMAV (T (I+l, J, 1 ), PR, TSTAR)
GVW=GAMMAV (T (I, J, I), PR, TSTAR)

GVN=GAMMAV (TNORTH, PR, TSTAR)
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GVS=GAMMAV (TSOUTH, PR, TSTAR)

B(I,J) = (GVE/DX(I+I)*U(I+I,J)+GVW/DX(I)*U(I-I,J) )*DY(J)/3.

- -2.*(GVE*(V(I+I,J)-V(I+I,J-1))-GVW*(V(I,J)-V(I,J-1)) )/3.
- +(GVN*(V(I+I,J)-V(I,J))-GVS*(V(I+I,J-1)-V(I,J-1)) )

- +GRASH*( RINFNON*(DX(I)+DX(I+I) )

- -(R(I,J)*DX(I)+R(I+I,J)*DX(I+I) ) )*DY(J)/2.

SPDXDY = (-GVE/DX(I+I)-GVW/DX(I) ) * DY(J)/3.

AP (I, J) =AE (I, J) +AW (I, J) +AN (I, J) +AS (I, J) -SPDXDY

DU (I, J)=DY (J)/AP (I,J)

UHAT (I, J) = (AE (I, J) *U (I+1, J) +AW (I, J) *U (I-1, J) +AN (I, J) *U (I, J+l)

- + AS(I,J)*U(I,J-1)+B(I,J))/AP(I,J)
i0 CONTINUE

DO 20 J=I,NY

DU(0, J)=0.

DU (NX, J) --0.

UHAT (0, J) =U (0, J)

20 UHAT (NX, J} =U (NX, J)
RETURN

END

SUBROUTINE VHATS (PR, TSTAR)

COMMON/L1/DX (0 :93), DY (0 :50), NX, NY, NLE

COMMON/L2/U (0 :93, 0 :50) ,V (0 :93, 0 :50) , T (0 : 93, 0 :50,1 :3) ,

- R(0: 93, 0:50) ,P (0: 93, 0:50), PPR (0 :93, 0: 50)

COMMON/L4/VHAT (0: 93, 0: 50), DV(0: 93, 0: 50), VSTAR (0 :93, 0 :50),

- AP (93, 50) ,AE (93, 50) ,AW (93, 50) ,

- AN (93, 50) ,AS (93,50) ,B (93, 50)

REAL PR, TSTAR, FN, FS, FE, FW, TP, TN, TS, TE, TW, GP, GN, GS, GE, GW,

- DN, DS, DE, DW, GVN, GVS, GVE, GVW, SPDXDY,

- TEAST, TWEST, VOLUME
C ....... EVALUATE COEFFICIENTS FOR INTERIOR V-CONTROL VOLUMES

DO 10 I=I,NX

DO 10 J=I,NY-I

FN= R(I,J+l) * (V(I,J)+V(I,J+I) )/2. * DX(I)

FS= R(I,J) * (V(I,J)+V(I,J-I))/2. * DX(I)

FE=(R(I+I,J)*DX(I) + R(I,J)*DX(I+I) )/(DX(I)+DX(I+I))

- * U(I,J) * DY(J)/2.

- +(R(I+I,J+I)*DX(I) + R(I,J+I)*DX(I+I) )/(DX(I)+DX(I+I))

- * U(I,J+I) * DY(J+I)/2.

FW=(R(I-I,J)*DX(I) + R(I,J)*DX(I-I) )/(DX(I)+DX(I-I))
- * U(I-I,J) * DY(J)/2.

- +(R(I,J+I)*DX(I-1) + R(I-I,J+I)*DX(I) )/(DX(I)+DX(I-1))

- * U(I-I,J+I) * DY(J+I)/2.

TP=(T(I,J,I) *DY(J+I) + T(I,J+I,I) *DY(J) )/(DY(J) + DY(J+I))

TN=(T(I,J+I,1)*DY(J+2) + T(I,J+2,1) *DY(J+I))/(DY(J+I)+DY(J+2))

TS=(T(I,J-I,I)*DY(J) + T(I,J,I) *DY(J-I))/(DY(J) + DY(J-I))

TE=(T(I+I,J,I)*DY(J+I) + T(I+I,J+I,I)*DY(J) )/(DY(J) + DY(J+I))
TW=(T(I-I,J,I)*DY(J+I) + T(I-I,J+I,I)*DY(J) )/(DY(J) + DY(J+I))

GP=GAMMAV (TP, PR, TSTAR)

GN=GAMMAV (TN, PR, TSTAR)

GS=GAMMAV (TS, PR, TSTAR)

GE=GAMMAV (TE, PR, TSTAR)

GW=GAMMAV (TW, PR, TSTAR)
DN=2. * GP*GN / (DY(J+I)*GN + DY(J+I)*GP) *

DS=2. * GP*GS / (DY(J)*GS + DY(J)*GP ) *
DE=2. * GP*GE / (DX(I)*GE + DX(I+I)*GP) *

DW=2. * GP*GW / (DX(I)*GW + DX(I-I)*GP) *

AE(I,J)=DE*A(ABS(FE/DE)) + AMAXI(-FE,0.)

AW(I,J)=DW*A(ABS(FW/DW)) + AMAXI(FW,0.)

DX (1)
DX (1)
(DY (J) +DY (J+l)) /2.

(DY (J) +DY (J+l)) /2.
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C .......... EVALUATE COEFFICIENTS FOR INTERIOR

DO 10 I=I,NX

DO 10 J=I,NY
FFE=DX(I+I)/(DX(I)+DX(I+I))

FFW=DX(I-I) /(DX(I)+DX(I-I))

FFN=DY (J+l) / (DY (J) +DY (J+l))

FFS=DY (J-l) / (DY (J) +DY (J-l))

RHE=(R(I,J)*FFE+R(I+I,J)* (I.-FFE))

RHW= (R(I, J) *FFW+R(I-I, J) * (I.-FFW))

RHN= (R (I, J) *FFN+R (I, J+l) * (I. -FFN) )

RHS=(R(I,J)*FFS+R(I,J-I)*(I.-FFS))

AE (I, J) =RHE*DU (I, J) *DY (J)

AW (I, J) =RHW*DU (I-i, J) *DY (J)

AN (I, J) =RHN*DV (I, J) *DX (I )

AS (I, J) =RHS*DV (I, J-l) *DX (I)

AN(I,J)=DN*A(ABS(FN/DN)) + AMAXI(-FN, 0.)

AS(I,J)=DS*A(ABS(FS/DS)) + AMAXI(FS,0.)

TEAST=( (T(I+I,J,I)+T(I+I,J+I,I))/2. * DX(I)

- +(T(I,J,I) +T(I,J+I,I) )/2. * DX(I+I) )/(DX(I)+DX(I+I))

TWEST=( (T(I-I,J,I)+T(I-I,J+I,I))/2. * DX(I)

- +(T(I,J,I) +T(I,J+I,I) )/2. * DX(I-I) )/(DX(I)+DX(I-I))

GVN=GAgR4AV (T (I, J+l, 1 ), PR, TSTAR)

GVS=GAMMAV (T (I, J, I) ,PR, TSTAR)

GVE=GAMMAV (TEAST, PR, TSTAR)

GVW=GAMM V (TWEST, PR, TSTAR)

B(I,J) = (GVN/DY(J+I)*V(I,J+I)+GVS/DY(J)*V(I,J-I) ) * DX(I)/3.

- -2.*(GVN*(U(I,J+I)-U(I-I,J+I))-GVS*(U(I,J)-U(I-I,J)) )/3.

- +(GVE*(U(I,J+I)-U(I,J))-GVW*(U(I-I,J+I)-U(I-I,J)) )
SPDXDY = (-GVN/DY(J+I)-GVS/DY(J) ) * DX(I)/3.

AP (I, J) =AE (I, J) +AW (I, J) +AN (I, J) +AS (I, J) -SPDXDY
DV (I, J) =DX (I)/AP (I, J)

VHAT (I, J) = (AE (I, J) *V (I+l, J) +AW (I, J) *V (I-l, J) +AN (I, J) *V (I, J+l)

- + AS(I,J)*V(I,J-I)+B(I,J) ) /AP (I,J)
CONTINUE

DO 20 I=I,NX

DV(I, 0) =0.

DV (I, NY) =0.

VHAT (I, 0) =V (I, 0)

VHAT (I ,NY) =V (I, NY)
RETURN

END

SUBROUTINE PRESSURE (ERP, PDAM, IBP)

COMMON/L1/DX (0 :93), DY (0: 50), NX, NY, NLE

COMMON/L2/U(0:93,0:50) ,V(0 :93, 0 :50) ,T (0 :93, 0: 50, I: 3),

- R(0:93,0:50),P(0:93,0:50),PPR(0:93,0:50)

COMMON/L3/UHAT (0 :93, 0 :50) ,DU (0 :93, 0 :50), USTAR (0 :93, 0 :50),

- UAP (93, 50), UAE (93, 50), UAW (93, 50),

- UAN (93, 50), UAS (93,50) ,UB (93, 50), GRASH, RINFNON

COMMON/L4/VHAT (0 :93, 0 :50) ,DV (0 :93,0 :50) ,VSTAR(0 :93, 0 :50),

- VAP (93, 50) ,VAE (93,50) ,VAW (93, 50),

- VAN (93, 50) ,VAS (93, 50) ,VB (93, 50)

COMMON/L5/AP (93, 50) ,AE (93, 50) ,AW (93,50) ,AN (93, 50),

- AS (93, 50), SC (93, 50), SP (93, 50), B (93, 50)

COMMON/L6/AA (0 :93), BB (0 :93) ,CC (0: 93) ,DD (0 :93), XX (0 :93)

REAL POF(0:93,0:50),PO(0:93,0:50),

- FFE, FFW, FFN, FFS, RHE, RHW, RHN, RHS, RESP, ERP, PDAM,

- FE, FW, FN, FS, DE, DW, DN, DS, GE, GW, GN, GS, GP
CONTROL VOLUMES

B (I, J) = (RHW*UHAT (I-I, J) -RHE*UHAT (I, J)) *DY (J)
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- +(RHS*VHAT(I, J-l) -RHN*VHAT(I, J) ) *DX(I)
AP(I, J) =AE(I, J) +AW(I, J) +AN(I, J)+AS(I, J)

10 CONTINUE
CALLOLDS(POF,P,NX,NY)
DO80 IBAILOUT-I,IBP
CALLOLDS(PO,P,NX,NY)

C- SWEEPUSINGVERTICALLINES
DO40 I=I,NX
DO20 J=I,NY

AA (J) =AP (I, J)/PDAM

BB(J) =AN (I, J)
CC (J) =AS (I, J)

20 DD (J) =AE (I, J) *P (I+l, J) +AW (I, J) *P (I-l, J) +B (I, J)
- + (I. -PDAM)/PDAM*AP (I, J) *POF (I, J)

IF (I.EQ.I) THEN
C .............. SET PRESSURE ARBITRARILY=0 AT TOP LEFT POINT

CC (NY) =0.

AA (NY) =I.

DD (NY) =0.
ENDIF

CALL TDMA (I,NY)

DO 30 J=I,NY

30 P (I,J)=XX(J)
40 CONTINUE

C ................... SWEEP USING HORIZONTAL LINES

DO 70 J=I,NY

DO 50 I=I,NX

AA(I) =AP (I, J)/PDAM

BB (I) =AE (I, J)

CC (I) =AW (I, J)

50 DD (I) =AN (I, J) *P (I, J+l) +AS (I, J) *P (I, J-l) +B (I, J)

- + (I.-PDAM)/PDAM*AP (I, J) *POF (I, J)

IF (J.EQ.NY) THEN
C .............. SET PRESSURE AKBITRARILY=0 AT TOP LEFT POINT

AA(1)=I.
BB (i) =0.

DD (i) =0.

ENDIF

CALL TDMA (1, NX)

DO 60 I=I,NX

60 P (I, J) =XX (I)

7.0 CONTINUE
CALL FINDDIF (P, PO, NX, NY, RESP, 'PRESSURE ' , IDIF, JDIF)

IF (ABS(RESP) .LT.ERP) GO TO 90
80 CONTINUE

90 CONTINUE

RETURN

END

SUBROUTINE USTARS (ERU, UDAM, IBU, PR, TSTAR)

COMMON/L1/DX (0 :93 ), DY (0 :50 ), NX, NY, NLE

COMMON/L2/U (0 :93,0 :50) ,V (0 :93, 0 :50) ,T (0 :93, 0 :50,1 :3),

- R(0 :93, 0: 50) ,P (0 :93, 0: 50) ,PPR(0 :93,0 :50)

COMMON/L3/UHAT (0 :93, 0 :50) ,DU (0 :93, 0 :50), USTAR (0 :93, 0 :50),

- AP (93, 50) ,AE (93, 50) ,AW (93, 50),

- AN (93,50) ,AS (93, 50) ,B (93, 50), GRASH, RINFNON

COMMON/L6/AA (0 :93), BB (0 :93), CC (0 :93) ,DD (0 :93), XX (0 :93)

COMMON/L9/IBC,UBC (0 :50) ,VBC (0 :50), TBC (0 :50, 3)

REAL U STAROF (0 :93, 0 :50 ), US TARO (0 :93, 0 :50 ), RE SU, E RU, UDAM

OF DOMAIN

OF DOMAIN
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CALLOLDS(USTAROF,USTAR,NX,NY)
DO 80 IBAILOUT=I, IBU

CALL OLDS (USTARO, USTAR, N'X,NY)
C ............. SWEEP USING VERTICAL LINES

DO 40 I=I,NX-I

DO 20 J=I,NY

AA (J) =AP (I, J)/UDAM

BB (J) =AN (I, J)

CC (J) =AS (I, J)

20 DD (J) =AE (I, J) *USTAR (I+l, J) +AW (I, J) *USTAR (I-l, J) +B (I, J)

- + (P(I,J) -P(I+I,J) ) * DY(J)

- + (i. -UDAM)/UDAM*AP (I, J) *USTAROF (I, J)
C .................. IMPOSE BOUNDARY CONDITIONS

C--BOTTOM--

IF (I.LE. (NLE-I)) THEN

AA(0)=I.

BB(0)=I.

DD(0)=0.

ELSE

AA(0)=I.

BB (0) =0.

DD(0) =U (I, 0)

ENDIF

C--TOP--

CC (NY+I) =0.

AA (NY+I) =i.

DD (NY+I) --I.

CALL TDMA (0, MY+ 1 )

DO 30 J=0,NY+I

30 USTAR (I, J) =XX (J)
40 CONTINUE

C ................... SWEEP USING HORIZONTAL LINES

DO 70 J=I,MY

DO 50 I=I,NX-I

AA (1)=AP (I, J) /UDAM

BB (I) =AE (I, J)

CC (I) =AW (I, J)

50 DD (I) =AN (I, J) *USTAR (I, J+l) +AS (I, J) *USTAR (I, J-l) +B (I, J)

- + (P(I,J) - P(I+I,J) ) * DY(J)

- + (1. -UDAM)/UDAM*AP (I, J) *USTAROF (I, J)

C .................. IMPOSE BOUNDARY CONDITIONS

C--LEFT--

AA(0)=I.
BB(0)=0.
DD (0) =I.

C--RIGHT--

cc (NX)=i.
AA (NX)=I.
DD (NX) =DX (NX) *UBC (J)/GAMMAV (T (NX, J, I), PR, TSTAR)

CALL TDMA (0, NX)

DO 60 I=0,NX
60 USTAR (I, J) =XX (1)

70 CONTINUE

CALL FINDDIF (USTAR, USTARO, NX, N-Y, RESU, ' U-STAR

IF (ABS(RESU) .LT.ERU) GO TO 90

80 CONTINUE

90 CONTINUE

RETURN

• , IDIF, JDIF)
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END

SUBROUTINE VSTARS (ERV, VDAM, IBV, PR, TSTAR)

COMMON/L1/DX (0 :93) ,DY (0 :50), NX, NY, NLE
COMMON/L2/U(0 :93, 0 :50) ,V(0 :93, 0 :50), T (0 :93, 0 :50, 1 :3),

- R (0 :93, 0:50) ,P (0:93,0:50), PPR(0 :93, 0: 50)

COMMON/L4/VHAT (0 :93, 0 :50) ,DV(0 :93, 0:50) ,VSTAR(0 :93, 0:50),

- AP (93, 50) ,AE (93, 50) ,AW (93, 50),

- AN (93, 50) ,AS (93, 50) ,B (93, 50)

COMMON/L6/AA (0 :93), BB (0 :93), CC (0: 93) ,DD (0 :93), XX (0 :93)

COMMON/L9/IBC,UBC (0 :50) ,VBC (0 :50), TBC (0 :50,3)

REAL VSTAROF(0:93,0:50),VSTARO(0:93,0:50),RESV, ERV,VDAM

CALL OLDS (VSTAROF, VSTAR, NX, NY)

DO 80 IBAILOUT=I,IBV

CALL OLDS (VSTARO, VSTAR, NX, NY)

C ................... SWEEP USING VERTICAL LINES

DO 40 I=I,NX

DO 20 J=I,NY-1

AA (J) =AP (I, J)/VDAM

BB (J) =AN (I, J)
CC (J) =AS (I, J)

20 DD (J) =AE (I, J) *VSTAR (I+l, J) +AW (I, J) *VSTAR (I-l, J) +B (I, J)

- + (P(I,J) - P(I,J+I) ) * DX(I)

- + (I. -VDAM)/VDAM*AP (I, J) *VSTAROF (I, J)
C .................. IMPOSE BOUNDARY CONDITIONS

C--BOTTOM--

IF (I.LE.NLE) THEN

AA(0)=I.

BB (0) =0.

DD (0) =0.

ELSE

AA(0)=I.

BB (0) =0.

DD (0) =V(I, 0)
ENDIF

C--TOP--

cc (NY)=i.
AA(NX)=I.
DD (NY) =0.

CALL TDMA (0,NY)

DO 30 J=0,NY

30 VSTAR (I, J) =XX (J)
40 CONTINUE

C ..................... SWEEP USING HORIZONTAL LINES

DO 70 J=I,NY-1

DO 50 I=I,NX

AA (I) =AP (I, J)/VDAM
BB (I) =AE (I, J)

CC (I) =AW (I, J)

50 DD (I) =AN (I, J) *VSTAR (I, J+l) +AS (I, J) *VSTAR (I, J-l) +B (I, J)

- + (P(I,J) -P(I,J+I) ) * DX(I)

- + (i .-VDAM)/VDAM*AP (I, J) *VSTAROF (I, J)
C .................... IMPOSE BOUNDARY CONDITIONS

C--LEFT--

AA(0)=I.
BB (0) =0.
DD (0) =b.

C--RIGHT--

CC (NX+I) =I.
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AA (NX+l) =I.

TMEAN=(T(NX, J,I)+T(NX+I,J,I))/2.

DD (NX+I) =DX (NX) /2. *VBC (J) /GAMMAV (TMEAN, PR, TSTAR)

CALL TDMA (0, NX+I)

DO 60 I=0,NX+I

60 VSTAR (I, J) =XX (I)

70 CONTINUE

CALL FINDDIF (VSTAR, VSTARO,NX,NY, RESV, 'V-STAR ' ,IDIF, JDIF)

IF (ABS(RESV).LT.ERV) GO TO 90

80 CONTINUE

90 CONTINUE

RETURN

END

SUBROUTINE PPRIME (ERPP, IBPP, I S KPP )

COMMON/LI/DX (0 :93) ,DY (0 :50) ,NX,NY, NLE
COMMON/L2/U (0 :93, 0 :50) ,V (0 :93, 0 :50) ,T (0 :93, 0 :50,1 :3) ,

- R(0 :93, 0 :50) ,P (0: 93, 0:50) ,PPR(0 :93,0 :50)

COMMON/L3/UHAT(0:93,0:50),DU(0:93,0:50),USTAR(0:93,0:50),

- UAP (93, 50), UAE (93,50), UAW (93, 50),

- UAN (93, 50) ,UAS (93, 50), UB (93, 50), GRASH, RINFNON
COMMON/L4/VHAT (0: 93, 0:50) ,DV (0 :93, 0" 50), VSTAR (0 :93, 0 :50),

- VAP (93, 50) ,VAE (93,50) ,VAW (93, 50),

- VAN (93,50) ,VAS (93, 50) ,VB (93, 50)

COMMON/LS/AP (93, 50) ,AE (93, 50) ,AW (93, 50) ,AN (93, 50),

- AS (93, 50), SC (93, 50), SP (93, 50), B (93, 50)

COMMON/L6/AA (0 :93), BB (0 :93), CC (0 :93), DD (0 :93), XX (0 :93)

REAL PPRO (0 :93, 0 :50 ) ,FFE, FFW, FFN, FFS, RHE, RHW, RHN, RHS,

- FE, FW, FN, FS, DE, DW, DN, DS, GE, GW, GN, GS, GP, RESPP, ERPP
EVALUATE COEFFICIENTS FOR INTERIOR CONTROL VOLUMES

DO I0 I=I,NX

DO 10 J=I,NY

FFE=DX(I+I)/(DX(I)+DX(I+I))

FFW=DX (I-i ) / (DX (I )+DX (I-I ) )

FFN=DY (J+l) / (DY (J) +DY (J+l))

FFS=DY (J-l) / (DY (J) +DY (J-l))

RHE= (R (I, J) *FFE+R (I+l, J) * (I .-FFE) )

KHW= (R (I, J) *FFW+R (I-I, J) * (i. -FFW) )

RHN= (R (I, J) *FFN+R(I, J+l) * (I .-FFN) )

RHS= (R (I, J) *FFS+R(I, J-l) * (I.-FFS))

AE (I, J) =RHE*DU (I, J) *DY (J)

AW (I, J) =RHW*DU (I-l, J) *DY (J)

AN (I, J) =RHN*DV (I, J) *DX (I)

AS (I, J) =RHS*DV (I, J-l) *DX (I)

B (I, J) = (RHW*USTAR (I-i, J) -RHE*USTAR (I, J) ) *DY (J)

- + (RHS*VSTAR (I, J-I )-RHN*VSTAR (I, J) )*DX (I )

AP (I, J) =AE (I, J) +AW (I, J) +AN (I, J) +AS (I, J)

I0 CONTINUE

DO 80 IBAILOUT=I, IBPP

CALL OLDS (PPRO, PPR, NX, NY)

.......... SWEEP USING VERTICAL LINES

DO 40 I=I,NX

DO 20 J=I,NY

AA (J) =AP (I, J)

BB (J) =AN(I, J)

CC (J) =AS (I, J)

DD (J) =AE (I, J) *PPR (I+l, J) +AW (I, J) *PPR(I-I, J) +B (I, J)

IF ((I.EQ.NX).AND. (ISKPP.EQ.0)) THEN
....... SET P-PRIME ARBITRARILY=0 AT TOP RIGHT POINT OF DOMAIN
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cc (NY)=0.
AA(NY)=I.
DD (NY)=0.

ENDIF

CALL TDMA (I,NY)

DO 30 J=I,NY

30 PPR (I, J) =XX (J)
40 CONTINUE

C ....... SWEEP USING HORIZONTAL LINES

DO 70 J=I,NY

DO 50 I=I,NX

AA(1) =AP (I,J)

BB (I) =AE (I, J)

CC (I) =AW (I, J)

50 DD (I) =AN (I, J) *PPR (I, J+l) +AS (I, J) *PPR (I, J-l) +B (I, J)

IF ((J.EQ.NY).AND. (ISKPP.EQ.0)) THEN

C .............. SET P-PRIME ARBITRARILY=0 AT TOP RIGHT POINT OF DOMAIN

cc (NX)=0.
AA (NX)--I.
DD (NX) =0.

ENDIF

CALL TDMA (I,NX)

DO 60 I=I,NX

60 PPR (I, J) =XX (I)
70 CONTINUE

CALL FINDDIF (PPR, PPRO, NX, NY, RESPP, 'P-PRIME ' , IDIF, JDIF)

IF (ABS(RESPP) .LT.ERPP) GO TO 90
80 CONTINUE

90 RETURN

END

SUBROUTINE CORVEL (PR, TSTAR)
COMMON/L1/DX (0 :93 ), DY (0 :50 ), NX, NY, NLE

COMMON/L2/U (0 :93, 0 :50) ,V (0 : 93, 0 :50), T (0 :93, 0 :50, 1 :3),

- R(0: 93, 0:50) ,P (0:93, 0: 50), PPR (0 :93, 0 :50)

COMMON/L3/UHAT (0 :93, 0 :50) ,DU (0 :93, 0 :50), USTAR (0 :93, 0 :50),

- UAP (93, 50) ,UAE (93, 50), UAW (93, 50),

- UAN (93, 50), UAS (93, 50) ,UB (93, 50), GRASH, RINFNON

COMMON/L4/VHAT (0 :93, 0: 50) ,DV (0 :93, 0 :50) ,VSTAR (0 :93, 0: 50),

- VAP (93, 50) ,VAE (93, 50) ,VAW (93, 50),
- VAN (93, 50) ,VAS (93, 50) ,VB (93, 50)

COMMON/L9/IBC,UBC (0 :50) ,VBC (0 :50), TBC (0 :50,3)

DO 10 I=I,NX-I

DO 10 J=I,NY

I0 U(I,J)=USTAR(I,J)+DU(I,J)*(PPR(I,J)-PPR(I+I,J))

DO 20 I=I,NX

DO 20 J=I,NY-I

20 V(I,J)=VSTAR(I,J)+DV(I,J)*(PPR(I,J)-PPR(I,J+I))
C ..... ADJUST BOUNDARY VELOCITIES

DO 30 J=I,NY
TMEAN= (T (NX, J, I)+T (NX+I, J, i) ) /2.

GVI=GAMMAV (T (NX, J, 1 ) ,PR, TSTAR)

GV2=GAMMAV (TMEAN, PR, TSTAR)

U (NX, J) = (U (NX, J) +U (NX-I, J) +DX (NX) *UBC (J)/GVI )/2.

30 V (NX+I, J) = (V (NX+I, J) +V (NX, J) +DX (NX)/2. *VBC (J) /GV2) /2.

DO 40 I=I,NX

40 V (I, NY) =V (I, NY-1)

DO 50 I=0, (NLE-I)

50 U(I, 0) =U(I, I)



133

RETURN
END

SUBROUTINE PHI (TAMB, DA, Q, E, FO, ERF, FDAM, M, TSTAR, IBF)

COMMON/L1/DX (0 :93 ), DY (0 :50 ), NX, N'Y,NLE

COMMON/L2/U (0 :93, 0 :50) ,V (0 :93, 0 :50), T (0 :93, 0 :50, 1 :3),

- R(0: 93, 0: 50) ,P (0:93,0:50) ,PPR(0 :93, 0:50)

COMMON/L5/AP (93, 50) ,AE (93, 50) ,AW (93, 50) ,AN (93, 50),

- AS (93, 50), SC (93, 50), SP (93, 50) ,B (93, 50)

COMMON/L6/AA (0 :93), BB (0 :93), CC (0 :93) ,DD (0 :93), XX (0 :93)

COMMON/L9/IBC,UBC (0 :50) ,VBC (0 :50), TBC (0 : 50,3)

REAL TOL(0:93,0:50,3),TOLF(0:93,0:50,3),TSTAR,

- TAMB, DA, Q, E, ERF, FDAM (3), PEF, FO, PRESP, PRESC, ARRHEN,

- SCC, SPP, FFE, FFW, FFN, FFS, LE (3 ), YI (3 ), TONOFF, TEl,

- FE, FW, FN, FS, DE, DW, DN, DS, GE, GW,GN, GS, GP, REST
TONOFF=0.

IF (M.EQ.I) THEN
PRESP=0.

PRESC=Q
TONOFF=I.

ENDIF

IF (M.EQ.2) THEN
PRESP=-I.

PRESC=0.

I SPEC=3

LE (M) =I.

YI (M)=i.
ENDIF

IF (M.EQ.3) THEN

PRESP=-FO

PRESC=0.

ISPEC=2

LE (M) =I.

YI (M)=0.
ENDIF

C .......... EVALUATE COEFFICIENTS FOR INTERIOR CONTROL VOLUMES

DO 10 I=I,NX

DO 10 J=I,NY

FFE=DX(I+I)/(DX(I)+DX(I+I))
FFW=DX(I-I) /(DX(I)+DX(I-I))

FFN=DY (J+l) / (DY (J) +DY (J+l))

FFS=DY (J-i) / (DY (J) +DY (J-i) )

FE=(R(I,J)*FFE+R(I+I,J)*(I.-FFE))

FW= (R (I, J) *FFW+R (I-l, J) * (i. -FFW) )

FN=(R(I,J)*FFN+R(I,J+I)* (I.-FFN))

FS= (R (I, J) *FFS+R (I, J-l) * (I. -FFS) )

GP=GAMMAT (T (I, J, I), M, TSTAR)

GE=GAMMAT (T (I+l, J, i) ,M, TSTAR)

GW=GAMMAT (T (I-I, J, 1 ), M, TSTAR)

GN=GAMMAT (T (I, J+l, I) ,M, TSTAR)

GS=GAMMAT (T (I, J-l, I), M, TSTAR)
DE=2. * GP*GE / (DX(I)*GE +

DW=2. * GP*GW / (DX(I)*GW +

DN=2. * GP*GN / (DY(J)*GN

DS=2. * GP*GS / (DY(J)*GS

AE(I,J)=DE*A(ABS(FE/DE)) +

AW(I,J) =DW*A(ABS (FW/DW)) +

AN(I,J)=DN*A(ABS (FN/DN)) +

AS(I,J)=DS*A(ABS(FS/DS)) +

* U(I,J) * DY(J)

* U(I-I,J) * DY(J)

* V(I,J) * DX(I)

* V(I,J-l) * DX(I)

DX (I+l) *GP)
DX (I-l) *GP)

+ DY(J+I) *GP)

+ DY(J-I) *GP)

AMAXI (-FE, 0. )

AMAXl (FW, 0. )

AMAXI (-FN, 0 .)

AMAXl (FS, 0. )

* DY (J)
* DY (J)

* DX(I)

* DX(I)
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ARRHEN=EXP (-E/T (I, J, i) )

PEF=DA*R (I, J) *R(I, J)

SPP=PRESP*PEF*T (I, J, I SPEC) *ARRHEN

SCC=PRESC*PEF*T (I, J, 2) *T (I, J, 3) *ARRHEN

B (I, J) =SCC*DX (I) *DY (J)

AP (I, J) =AE (I, J) +AW(I, J) +AN (I, J) +AS (I, J) -SPP*DX (I) *DY (J)

10 CONTINUE

CALL OLDS3 (TOLF, T, NX, NY, M)

DO 80 IBAILOUT=I,IBF

CALL OLDS3 (TOL, T, NX, NY, M)
C ................... SWEEP USING VERTICAL LINES-

DO 40 I=I,NX
DO 20 J=I,NY

AA (J) =AP (I, J)/FDAM (M)

BB (J)=AN (I,J)
CC (J)=AS (Z,J)

20 DD (J) =AE (I, J) *T (I+l, J, M) +AW (I, J) *T (I-l, J, M) +B (I, J)

- + (I.-FDAM(M)) /FDAM (M) *AP (I, J) *TOLF (I, J,M)
C ........ IMPOSE BOUNDARY CONDITIONS

C--BOTTOM--

IF (I.LE.NLE) THEN

AA(0)=I.
BB(0)=I.

DD (0) =0.
ELSE

TEI=R(I, 0) *V(I, 0) *LE (M) *DY (i) * (I. -TONOFF) /

- ( GAMMAT(T(I,I,I),M, TSTAR)+GAMMAT(T(I,0,1),M, TSTAR) )

AA (0) =1.+TEl

BB (0 )=i. -TONOFF

DD (0) =TEI*YI (M) +T (I, 0, I) *TONOFF
ENDIF

C--TOP--

CC (NY+I) =0.

AA (NY+I) =I.

DD (NY+I) =T (I, NY+I,M)

CALL TDMA (0, NY+I)

DO 30 J=0,NY+I

30 T (I, J,M) =XX (J)
40 CONTINUE

C ................... SWEEP USING HORIZONTAL LINES

DO 70 J=I,NY

DO 50 I=I,NX

AA (I) =AP (I, J)/FDAM (M)

BB (I) =AE (I, J)

CC (I) =AW (I, J)

50 DD (I) =AN (I, J) *T (I, J+I,M) +AS (I, J) *T (I, J-l, M) +B (I, J)

- + (I.-FDAM(M))/FDAM(M)*AP(I,J)*TOLF(I,J,M)
C .................. IMPOSE BOUNDARY CONDITIONS

C--LEFT--

AA(0)=I.
BB (0) =0.

DD (0) =T (0, J,M)
C--RIGHT--

CC (NX+I) =I.

AA (NX+I) =I.

TMEAN= (T (NX, J, i )+T (NX+I, J, i ) )/2.

DD (NX+I) =DX (NX)/2. *TBC (J, M)/GAMM T (TMEAN,M, TSTAR)

CALL TDMA (0, NX+I)
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DO60 I=0,NX+I
60 T(I, J,M)=XX(I)
70 CONTINUE

CALL FINDDIF3 (T, TOL, NX, NY, REST, 'PHI

IF (ABS(REST).LT.ERF) GO TO 90
80 CONTINUE

90 CONTINUE

RETURN

END

SUBROUTINE DENS (TSTAR)

COMMON/LI/DX (0 :93) ,DY (0 :50) ,NX,NY,NLE

',M)

C

C

900 FORMAT (5 (IX, F7.4))

905 FORMAT(IP,5(IX,EI2.5))

RETURN
END

I0

2O

SUBROUTINE

REAL X(0:93,0:50)

IF (NFORMAT. EQ. I)

DO 10 I=NX0,NXT

WRITE (13,900)

ELSE

DO 20 I=NX0,NXT

WRITE (13,905)

WRITE2 (X, NX0, NXT, NY0, NYT, NFORMAT)

THEN

(X (I, J) , J=NY0, NYT)

(X (I, J), J=NY0, NYT)

COMMON/L2/U (0 : 93, 0 :50) ,V (0 : 93, 0 : 50), T (0 :93, 0 : 50, 1 :3),

- R(0:93,0 :50) ,P (0 :93, 0 : 50) ,PPR(0: 93, 0: 50)

REAL TSTAR

DO 10 I=0,NX+I

DO 10 J=0,NY+I

i0 R (I, J) =TSTAR/T (I, J, I)

RETURN
END

SUBROUTINE TDMA (NI,N2)

COMMON/L6/AA (0 :93), BB (0 : 93), CC (0 :93), DD (0 :93) ,XX (0 :93)

REAL PP (0:93) ,QQ(0:93)

C--THE TDM IS OF THE FORM AA(I)XX(I)=BB(I)XX(I+I)+CC(I)XX(I-I)+DD(I)--
C--FORWARD SUBSTITUTION--

CC (NI) =0.

BB (N2) =0.

DO I0 I=NI,N2

PP (I)=BB (I) / (AA (I) -CC (I) *PP (I-l))

I0 QQ (I) = (DD (I) +CC (I) *QQ (I-l)) / (AA (I) -CC (I) *PP (I-l))
C--BACK SUBSTITUTION--

XX (N2) =QQ (N2)

DO 20 II=NI,N2-1
I =N2-1 +NI -I I

20 XX (I) =PP (I) *XX (I+l) +QQ (1)

RETURN
END

SUBROUTINE WRITE1 (X, TX, NX0, NXT, NFORMAT)

REAL X(0:570)

IF (TX.EQ.0.) TX=I.

IF (NFORMAT.EQ.I) THEN

WRITE (13,900) ((X (I)/TX), I=NX0, NXT)

ELSE

WRITE (13,905) ( (X (I)/TX), I=NX0, NXT)

ENDIF
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c

C

ENDIF

900 FORMAT(5 (IX, F7.4) )
905 FORMAT (IP, 5 (lX,EI2.5))

RETURN

END

SUBROUTINE WRITE3 (X, NX 0, NXT, NY 0, NYT, NFORMAT )

REAL X(0:93,0:50,3)

DO 5 M,=2, 3
DO 5 I=NX0,NXT

DO 5 J=NY0,NYT

IF (X(I,J,M).LT.I.E-78) X(I,J,M)=0.

5 CONTINUE

IF (NFORMAT.EQ. i) THEN

DO 10 M=I,3
DO i0 I=NX0,NXT

I0 WRITE(13,900) (X(I,J,M),J=NY0,NYT)

ELSE

DO 20 M=I,3

DO 20 I=NX0,NXT

20 WRITE(13,905) (X(I,J,M),J=NY0,NYT)
ENDIF

900 FORMAT (5 (IX, F7.4) )

905 FORMAT (IP, 5 (IX, El2.5) )

RETURN
END

i0

20

SUBROUT INE

REAL X(0: 570,2)
IF (NFORMAT. EQ. 1 )

DO 10 I=NX0,NXT

WRITE (13,900)
ELSE

DO 20 I=NX0,NXT

WRITE (13,905)

ENDIF

WRITE 4 (X, NX0, NXT, NY 0, NYT, NFORMAT )

THEN

(X (I, J), J=NY0, NYT)

(X (I, J), J=NY0, NYT)

900 FORMAT (5 (IX, F7.4))

905 FORMAT(IP,5(IX, EI2.5))

RETURN

END
SUBROUTINE FINDDIF (ARRI, ARR2, NX, NY, MAXDIF, VARNAME, IDIF, JDI F)

REAL ARRI (0 :93, 0 :50) ,ARR2 (0 :93, 0 :50), MAXDIF, LOCDIF

CHARACTER VARNAME* 10

MAXDIF=0.

IDIF=0

JDIF=0

DO I0 I=0,NX+I

DO I0 J=0,NY+I

LOCDIF=ARRI (I, J) -ARR2 (I, J)

IF (ABS (LOCDIF) .GT.ABS (MAXDIF)) THEN
MAXDI F=LOCDIF

IDIF=I

JDIF=J

ENDIF

10 CONTINUE
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WRITE(12,900) VARNAME,MAXDIF,IDIF, JDIF
900 FOKMAT('DELTA ',A,' = ',F9.5,' AT ',I3,', ',I3)

RETURN

END

SUBROUTINE FINDDIF3 (ARRI, ARR2, NX, NY, MAXDIF, VARNAME, M)

REAL ARRI (0 : 93,0 :50,3), ARR2 (0 :93, 0 :50, 3), MAXDIF, LOCDIF
CHARACTER VARNAME* 10

MAXDIF=0.

IDIF=0

JDIF=0

DO 10 I=0,NX+I

DO 10 J=0,NY+I

LOCD I F =ARRI (I, J, M) -ARR2 (I, J, M )

IF (ABS (LOCDIF) .GT.ABS (MAXDIF)) THEN
MAXDI F=LOCDIF

IDIF=I

JDIF=J
ENDIF

10 CONTINUE

WRITE (12,900) VARNAME, M, MAXDIF, IDIF, JDIF

900 FORMAT('DELTA ',A, I2,' = ',F9.5,' AT ',13,', ',I3)
RETURN

END

SUBROUTINE OLDS (OLD, CURRENT, NX, N-Y)

REAL OLD(0:93,0:50),CURRENT(0:93,0:50)

DO I0 I=0,NX+I

DO 10 J=0,NY+I

10 OLD (I, J) =CURRENT (I, J)
RETURN

END

SUBROUTINE OLDS3 (OLD, CURRENT, NX, NY, M)

REAL OLD (0:93,0:50,3),CURRENT(0:93,0:50,3)

DO i0 I=0,NX+I

DO 10 J=0,NY+I

10 OLD (I, J,M) =CURRENT (I, J,M)
RETURN

END

SUBROUTINE DAMPER (OLDVAL, NEWVAL, FRACT, NX, NY)

REAL OLDVAL (0 :93, 0 :50 ), NEWVAL (0 :93, 0 : 50 ), FRACT

DO 10 I=0,NX+I

DO I0 J=0,NY+I

10 NEWVAL (I, J) =,FRACT*NEWVAL (I, J) + (1.-FRACT) *OLDVAL (I, J)

RETURN

END

i0

SUBROUTINE DAMPER3 (OLDVAL, NEWVAL, FRACT, NX, NY, M)

REAL OLDVAL(0:93,0:50,3),NEWVAL(0:93,0:50,3),FRACT

DO i0 I=0,NX+I

DO i0 J=0,NY+I
NEWVAL (I, J, M) =FRACT*NEWVAL (i, J, M) + (1. -FRACT) *OLDVAL (I, J, M)

RETURN

END

FUNCTION CVMGT (AAA, BBB, CCC)

REAL AAA, BBB
LOGICAL CCC

IF (CCC) THEN



138

CVMGT=AAA

ELSE

CVMGT=BBB

ENDIF

RETURN

END

FUNCTION A (P)
C ............ "PECLET"

REAL X,P

X= (1.-0.1"P)*'5

IF (X.GT.0.) THEN
A=X

ELSE

A=0.

ENDIF

RETURN

END

C

FUNCTION PREFERRED IN SIMPLE ALGORITHM.

FUNCTION GAMMAT (XXX, M, TSTAR)

C ................. EVALUATES CONDUCTIVITY, GAMMAT, AT T=XXX .............

REAL XXX, TSTAR
GAMMAT=XXX / TS TAR

RETURN

END

C

FUNCTION GAMMAV (XXX, PR, TSTAR)

C ...... EVALUATES VISCOSITY, GAMMAV, AT T=XXX AND GIVEN PR--

REAL XXX, PR, TSTAR
GAMMAV=PR* XXX / TSTAR

RETURN

END

SUBROUTINE SOLID (EP S, VFL, VFU, VF, VE 0, UBUOY,

- THICK, ZZZ, TX, XODAMP, XNDAMP, ASW, IBEG, IRIGHT, MMAX, KSOL)

COMMON/L1/DX (0 :93), DY (0 :50 ), NX, NY, NLE
COMMON/L2/U (0 :93, 0 :50) ,V (0 :93, 0 :50), T (0 :93, 0 :50,1: 3),

- R (0 :93, 0: 50) ,P (0 : 93, 0 :50), PPR(0 :93, 0 :50)

COMMON/L7/RSTAR, RS, CS, CP, SIG, TO, TL, XL, ES, TAU, ASTAR, TSTAR

COMMON/L8/DXP (0: 500) ,DYP (0: I00), UPAR (2, 0: I00), VPAR (2, 0 :I00),

- TPAR(2, 0 :i00,3), TS (0 :570, 2), USPAR (0 :570) ,VSPAR (0 :570)

REAL QR, RR, S, LN, C, XR, QYA, AA, BB, CC, DD, EE, FF, DHDX, ASTAR,
- QY (0 :570), TOV (0 :570), THICK (0 :570),

- EP S, VFL, VFU, VF, VE 0, UBUOY, Z Z Z, TX, XODAMP, XNDAMP, ASW, UREF
NX2=IBEG+IRIGHT-1

RR=RS*CS/RSTAR/CP
S=SIG*EPS*T0**3/RSTAR/CP

LN=(I.-CP/CS)*TL/T0-XL/CS/T0

C=CP/2./CS
E=ES

VFLINI=VFL

VFUINI=VFU

THKNEW=I.

THKOLD=0.

C ........ BEGIN MAIN ROUTINE

DO 888 III=l,100

IF (ABS(1.-THKOLD/THKNEW).LT.0.01)
THKOLD=THKNEW
VFL=VFLINI

VFU=VFUINI

GOTO 999
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MM=0
DOI0 IK=NLE+I,NX2+I

i0 TOV(IK)=TS(IK, I)
I=NLE+I

QY(I)=(TS(I,2)+TS(I,I))* (TS(I,2)-TS (I,l)) /DY(1) /TSTAR

DO 20 I=NLE+2,NX2+I

QY (I) = (TS (I, 2) +TS (I, i) ) * (TS (I, 2) -TS (I, i) ) /DY (I)/TSTAR
20 CONTINUE

30 VF= (VFL+VFU)/2.

MM=MM+ 1

IF (MM.GT.MMAX) THEN

WRITE(*,*) 'MM EXCEEDED, VF = ',VF
ZZZ=I.

GO TO 999

ENDIF

UREF =VE 0+UBUOY-VF

XR=AS TAR/UREF

R1 =RR*VF /UREF

SI=S/UREF

THICK (NX2+I) =TAU/XR

DO 40 J=NLE+I,NX2

I=NLE+NX2-J+I

DHDX=ASW/VF*( XNDAMP*EXP(-E/TS(I+I,I))+

- XODAMP*EXP (-E/TOV(I)) ) / (XNDAMP+XODAMP)

IF (I.LT.IBEG) DDX=(DX(I)+DX(I+I))/2.

IF (I.GE.IBEG) DDX=DXP(I-IBEG+I)

THICK (I) =THICK (I+l) -DHDX*DDX
IF (THICK(I).LT.0.) THEN

VFL=VF

GO TO 30

ENDIF

QYA= (QY (I) +QY (I+l))/2.
AA=RI* (THICK (I+l) *TS (I+l, I)/DDX-DHDX* (LN+C*TS (I+l, i) ) )

BB=SI* (TS(I+I,I)**4+I.)

CC=RI* (THICK (I) /DDX+DHDX*C) +2.*SI*TS (I+l, i) **3

TS (I, I) = (QYA+AA+BB) /CC

IF (TS(I,I).LT.I.) TS(I,I)=I.
40 CONTINUE

IF (ABS(THICK(NLE+I)) .LT. (I.D-4*TAU/XR)) GO TO 50

IF (THICK(NLE+I).GT.0.D0) THEN
VFU=VF

GO TO 30

ENDIF

50 CONTINUE

TX=TAU/XR

THKNEW=THICK (NLE+ 1 )

888 IF (KSOL.NE.0) GO TO 999

900

905

999

FORMAT (iX, 0P, I3, IP, 4 (IX, El2.5) )

FORMAT (2X,0P,I3,1P, IX, EI2.5,1X, Eg.2)

WRITE (19,905) MM, VF, (THICK(NLE+I)/TX)
CONTINUE

RETURN

END

SUBROUTINE PARGRID (NF, IBEG, JTOP, IRIGHT, RDXP, DXPMIN, DXPMAX)

COMMON/L1/DX (0 :93), DY (0 : 50) ,NX, NY, NLE

COMMON/L2/U (0 :93, 0 : 50) ,V (0 :93, 0 :50), T (0 :93, 0 :50,1 :3),

- R(0: 93, 0: 50) ,P (0:93, 0: 50), PPR (0 :93, 0: 50)
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COMMON/L8/DXP (0 :500) ,DYP (0 :i00), UPAR (2, 0: I00), VPAR (2,0 :i00) ,

- TPAR(2, 0 :i00,3), TS (0 :570, 2) ,USPAK(0 :570) ,VSPAR (0 :570)

IF (NF.EQ.I) GO TO 35
NF=I

FFC=I.

DO i0 J=0,NY

10 DYP (J) =DY (J)

DO 20 J=NY+I,NY+I+JTOP

20 DYP (J)=DY (NY)

DO 30 I=IBEG, NX

30 DXP (I-IBEG+I) =DX (I)/2. +DX (I+l)/2.

DXP (NX+2-IBEG) =DXPMIN

DO 33 I=NX+3-IBEG, IRIGHT

DXP (I) =DXP (I-l) *RDXP

33 DXP (I )=CVMGT (DXP (I), DXPMAX, DXP (I) .LT. DXPMAX)
C .......... SET INITIAL VALUES FOR PARABOLIC CALCULATION

IF (IBEG.EQ.NX+I) FFC=0.

35 DO 40 J=0,NY+I

UPAR (1, J) = (FFC*U (IBEG, J) +U (IBEG-I, J) ) / (1. +FFC)

TPAR (i, J, I) =T (IBEG, J, i)

TPAR (I, J, 2) =T (IBEG, J, 2)

40 TPAR(I,J, 3)=T(IBEG, J, 3)

VPAR (i, 0) =V (IBEG, 0)

DO 50 J=I,NY

50 VPAR(I,J)=(V(IBEG, J)+V(IBEG, J-I))/2

VPAR (I, NY+I )=V (IBEG, NY)

DO 60 J=NY+2,NY+I+JTOP

UPAR (1, J) =UPAR (1, NY+I )

VPAR (1, J) =VPAR (1, NY+I )

TPAR (i, J, i) =TPAR (i, NY+I, I)

TPAR (i, J, 2) =TPAR (I,NY+I, 2)
60 TPAR(I, J, 3) =TPAR(I,NY+I, 3)

CONTINUE

RETURN

END

SUBROUTINE SETSUR (IBEG, JTOP, IRIGHT, ES, ASW, RS,

- TSTAR, RSTAR, VF, VEL, ISR)

COMMON/L1/DX (0 :93 ), DY (0 :50), NX, NY, NLE

COMMON/L2/U(0 :93, 0 :50) ,V (0 :93, 0 :50), T (0 :93, 0 :50, 1 :3),

- R(0 :93,0 :50) ,P (0:93,0:50), PPR(0: 93, 0 :50)

COMMON/L8/DXP (0 :500), DYP (0 :i00), UPAR (2, 0 :i00) ,VPAR (2, 0 :I00),

- TPAR (2, 0 :I00, 3), TS (0 :570,2), USPAR (0 :570), VSPAR (0 :570)

IF (ISR.EQ.I) GO TO 25
DO 10 I=NLE+I,IBEG

TS (I, I)=T(I, 0, i)

I0 TS (I,2)=T (I, i, I)
DO 20 I=IBEG+I,IBEG+IRIGHT

TS (I, i) =TS (IBEG, 1)- (TS (IBEG, i) -i.) * (I-IBEG) / (I. *IRIGHT)

20 TS (I, 2) =TS (IBEG, 2)- (TS (IBEG, 2)-I. ) * (I-IBEG) / (I.*IRIGHT)

25 DO 30 I=IBEG, IBEG+IRIGHT

C******** NOTE}!! THE FOLLOWING LINE ASSUMES EQU. OF STATE **
• ************************ KHO=TSTAR/T ***********************

VSPAR (I) =EXP (-ES/TS (I, I) ) *ASW*RS/TSTAR*TS (I, I) /RSTAR/VEL

30 USPAR(I) =U(NX, 0)
CONTINUE

RETURN

END
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SUBROUTINE PARCA (IBEG, JTOP, IRIGHT, PR,

- TSTAR, GR, RINFNON, DA, Q, E, FO, IPAR, IDA, VEL, RSTAR, ASTAR)

COMMON/LI/DX (0 :93) ,DY (0:50), NX, NY, NLE

COMMON/L6/AA (0 :93), BB (0 :93) ,CC (0 :93), DD (0 :93), XX (0 :93)

COMMON/L8/DXP (0 :500) ,DYP (0 :I00) ,UPAR(2, 0: I00), VPAR (2, 0: i00),

- TPAR (2, 0: I00, 3), TS (0: 570,2), USPAR (0 :570), VSPAR (0 :570)

COMMON/L9/IBC, UBC (0 :50) ,VBC (0 :50), TBC (0 :50,3)

REAL DENS (2, 0: I00), GAV (2,0 :i00), GAT (2, 0 :i00) ,ALPH (0 :100),

- BETA (0 :I00), WFPAR (0 :i00)

*********************** DIFFUSION PROPERTIES CALCULATED************

NYPAR=NY+JTOP

DO 120 I=I,IRIGHT
C ................... BEGIN CALCULATION

DXI=DXP (I)

DO I0 J=0,NYPAR+I

C'THE FOLLOWING LINES ASSUME EQUATION OF STATE AND DIFF. COEFF.'S***

DENS (i, J) =TSTAR/TPAR (I, J, i)

GAV (I, J) =PR*TPAR (I, J, I) /TSTAR

i0 GAT(I,J)=TPAR(I,J,I)/TSTAR
C .................... COMPUTE U-VELOCITY"

DO 20 J--I,NYPAR

DYU= (DYP (J+l) +DYP (J))/2.

DYL= (DYP (J) +DYP (J-l))/2.
DY2 =DYU+DYL

DMUDY= ( (GAV (1, J+l )-GAV (1, J) ) *DYL/DYU

- +(GAV(I,J)-GAV(I,J-I))*DYU/DYL ) /DY2

RHOVEE=DENS (1, J) *VPAR (1, J)

RU01=DENS (I, J) *UPAR (I, J) /DXI
RU02 =RHOVEE*DYL /DYU/DY2

RUO3=RHOVEE*DYU/DYL/DY2

RU04=2. *GAV (I, J) /DY2/DYL

RU05=2. *GAV (i, J)/DY2/DYU
RU06=DYL/DYU/DY2*DMUDY

RU07 =DYU/DYL/DY2 * DMUDY

AA (J) =RU0 I-RU02 +RU03+RU04 +RU05+RU06-RU07

BB (J) = -RU02 +RU05+RU06

CC (J) = RU03+RU04 -RU07

20 DD (J) =RU01*UPAR (I, J) +GR* (RINFNON-DENS (i, J) )
C ................ SET BOUNDARY CONDITIONS FOR U-VELOCITY-

AA(0)=I.
BB (0) =0.

DD (9 )=USPAR (IBEG+I )

CC (NYPAR+I) =9.

AA (NYPAR+I) =I.

DD (NYPAR+ 1 )=UPAR (1, NYPAR+ 1 )

CALL TDMA (9, NYPAR+ 1 )

DO 39 J=9,NYPAR+I

39 UPAR (2, J) =XX (J)
C .............. DETERMINE COEFFICIENTS FOR UPWIND SCHEME

DO 39 J=I,NY

IF (VPAR(I,J+I).LT.0.) THEN

ALPH (J) =I.

ELSE

ALPH (J) =9.

ENDIF

IF (VPAR(I,J-I).GT.9.) THEN

BETA (J) =I.
ELSE
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BETA(J)=0.
ENDIF

CONTINUE
COMPUTE T ....

DO 40 J=I,NYPAR

DYU = (DYP (J+l)+DYP (J))/2.

DYL= (DYP (J) +DYP (J-l))/2.

DY2"_DYU+DYL

DMUDY= ( (GAT (I, J+l) -GAT (i, J) ) *DYL/DYU

- + (GAT (I, J) -GAT (I, J-l) ) *DYU/DYL )/DY2

RHOVEE=DENS (1, J) *VPAR (1, J)
RU01 =DENS (1, J) *UPAR (1, J )/DXl

RU22=RHOVEE*ALPH (J) *2./DY2

RU23=P, HOVEE* (BETA (J) -ALPH (J)) *2./DY2

RU24=RHOVEE* (-BETA (J))*2./DY2

RU04=2. *GAT (I, J)/DY2/DYL

RU05=2. *GAT (1, J)/DY2/DYU

RU06=DYL/DYU/DY2* DMUDY

RU07=DYU/DYL/DY2*DMUDY

WFST=Q*DA*TPAR (1, J, 2) *TPAR (1, J, 3)

- *DENS (i, J) *DENS (i, J) *EXP (-E/TPAR (i, J, i) )

AA(J)=RUOI+RU23 +RU04+RU05+RU06-RU07+WFST* (2.-E/TPAR (I, J, I) )

- /TPAR (I, J, i)

BB (J) = -RU22 +RU05+RU06

CC (J) = -RU24 +RU04 -RU07

40 DD (J)=RU01*TPAR(I, J, I) +WFST* (3.-E/TPAR(I, J, I) )
C ................ SET BOUNDARY CONDITIONS FOR T ........

AA(0)=I.

BB(0)=0.

DD (0) =TS (IBEG+I, I)

CC (NYPAR+ 1 )=0.

AA (NYPAR+l) =I •

DD (NYPAR+ 1 )=TPAR (1, NYPAR+l, 1 )

CALL TDMA (0, NYPAR+I )

DO 50 J=0,NYPAR+I

IF (XX(J).GT.10.) XX(J)=I0.

50 TPAR (2, J, i) =CVMGT (XX (J), 1., XX (J) .GT. 1. )

IF (I.EQ.1) THEN

DO 51 J=0,NYPAR+I
C'THE FOLLOWING LINES ASSUME EQUATION OF STATE AND DIFF. COEFF. 'S***

GAV (2, J) =PR*TPAR (2, J, 1 ) /TSTAR

51 GAT (2,J) =TPAR (2, J, i)/TSTAR
ENDIF

C ..... CALCULATE NEW VALUES OF DENSITY ........

DO 60 J=0,NYPAR+I

60 DENS (2,J) =TSTAR/TPAR(2, J, i)

C ........... COMPUTE YF-"

DO 70 J=I,NYPAR

DYU= (DYP (J+l) +DYP (J))/2.

DYL= (DYP (J) +DYP (J-l))/2.

DY2=DYU+DYL

DMUDY=( (GAT(1,J+I)-GAT(1,J))*DYL/DYU

- +(GAT(I,J)-GAT(I,J-1))*DYU/DYL ) /DY2

RHOVEE=DENS (I, J) *VPAR (I, J)
RU01=DENS (i, J) *[]PAR (I, J)/DXl

RU22=RHOVEE*ALPH (J) *2./DY2

RU23=RHOVEE * (BETA (J) -ALPH (J)) *2./DY2

RU24=RHOVEE* (-BETA (J)) *2./DY2
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RU04=2.*GAT(I, J)/DY2/DYL
RU05=2.*GAT(1,J)/DY2/DYU
KU06=DYL/DYU/DY2* DMUDY

RU07=DYU/DYL/DY2 *DMUDY

RU 08 = -DA* TPAR (1, J, 3 ) *DENS (2, J) *DEN S (2, J ) *EXP (-E /TPAR (2, J, 1 ) )
AA (J) =RU01+RU23 +RU04+RU05+RU06-RU07-RU08

BB (J) = -RU22 +KU05+RU06
CC (J) = -RU24 +RU04 -RU07

70 DD (J) =RU01*TPAR(I, J, 2)
C ................ SET BOUNDARY CONDITIONS FOR YF.

• **********************--* LEF=LEO=I*********************************

TEl=DENS (2,0) *VSPAR (IBEG+I) *DYP (I) /

- ( GAMMAT(TPAR(2,1,1),2,TSTAR)+GAMM T(TPAR(2,0,1),2,TSTAR) )

AA (0) =I. +TEl

BB (0) =I.
DD (0 )=TEl

CC (NYPAR+I) =0.

AA (NYPAR+I) =i.

DD (NYPAR+I) =TPAR (1, NYPAR+ 1, 2 )

CALL TDMA (0, NYPAR+I )

DO 80 J=0,NYPAR+I

80 TPAR (2, J, 2) =CVMGT (XX (J), 0. ,XX (J). GT. 0° )

C .............. ,----COMPUTE YO

DO 90 J=I,NYPAR

DYU = (DYP (J+l) +DYP (J))/2.

DYL= (DYP (J) +DYP (J-l))/2.
DY2=DYU+DYL

DMUDY= ( (GAT (1, J+ 1 )-GAT (i, J) )*DYL/DYU

- + (GAT (1, J) -GAT (1, J-I ) )*DYU/DYL )/DY2

RHOVEE=DENS (I, J) *VPAR (I, J)

RU01=DENS (1, J) *UPAR (i, J)/DXl
RU22=RHOVEE*ALPH (J) *2./DY2

RU23=RHOVEE* (BETA (J) -ALPH (J)) *2./DY2

RU24=RBOVEE* (-BETA (J))*2./DY2

RU04=2. *GAT (I, J)/DY2/DYL

RU05=2. *GAT (I, J)/DY2/DYU

RU06=DYL/DYU/DY2*DMUDY

RU07=DYU/DYL/DY2 *DMUDY

KU08=-FO*DA*TPAR(2, J, 2) *DENS (2, J) *DENS (2, J) *EXP (-E/TPAR (2, J, I) )

AA (J) =RU01 +RU23 +RU04 + RU05+RU06-RU07-RU08

BB (J) = -RU22 +RU05+RU06

CC (J) = -RU24 +RU04 -RU07

90 DD (J)=RU01*TPAR(I, J, 3)
C ................ SET BOUNDARY CONDITIONS FOR YO

• **********************--, LEF=LEO=I*************************** ******

TEl=DENS (2, 0) *VSPAR (IBEG+I) *DYP (i)/2./GAMMAT (TPAR (2, 1,1 ), 3, T STAR)

AA (0) =I. +TEl

BB (0) =I.

DD (0) =0.

CC (NYPAR+I) =0.

AA (NYPAR+I) =I.

DD (NYPAR+I) =TPAR (i, NYPAR+I, 3)

CALL TDMA (0,NYPAR+I)

DO i00 J=0,NYPAR+I

IF (XX(J) .GT.XX(NYPAR+I)) XX(J)=XX(NYPAR+I)

100 TPAR (2, J, 3) =CVMGT (XX (J), 0., XX (J) .GT. 0. )
C ....... COMPUTE V-VELOCITY ......

VPAR (2,0 ) =VSPAR (IBEG+I )
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DO110 J=0,NYPAR
DYU=(DYP(J+l) +DYP (J))/2.

ii0 VPAR(2, J+l) = (-UPAR(2, J+l) +DENS (1, J+l)/DENS (2, J+l) *UPAR (I, J+l) )

- *DYU/DXI+DENS (2, J)/DENS (2, J+l) *VPAR (2, J)
C ................ SET B.C.'S FOR ELLIPTIC REGION

IF (IBC.NE.I) GO TO 114

IF ((IBEG+I.EQ.NX+l) .OR. ((IBEG.EQ.NX+I) .AND. (I.EQ.I))) THEN

DO 113 J=I,NY

GVAVE= (GAV (i, J) +GAV (2, J) )/2.

GTAVE= (GAT (I, J) +GAT (2, J) )/2.

UBC (J) =GVAVE* (UPAR (2, J) -UPAR (I, J) )/DX1

VBC (J) =GVAVE* (VPAR (2, J) -VPAR (1, J) )/DXl

TBC (J, i) =GTAVE* (TPAR(2, J, i) -TPAR(I, J, l) )/DXI

TBC (J, 2) =GTAVE* (TPAR (2, J, 2) -TPAR (I, J, 2) ) /DXI

113 TBC (J, 3) =GTAVE* (TPAR(2, J, 3)-TPAR(1, J, 3) )/DX1
ENDIF

C ..................... SET TS (2) VALUES

114 TS (IBEG+I, 2) =TPAR(2, 1,1)
C ............... OPTIONALLY WRITE DATA

IF (IPAR.EQ.I) THEN

WRITE (31,900) (UPAR(2,J),J=0,NY+I+JTOP)

WRITE (32,900) (VPAR(2,J),J=0,NY+I+JTOP)

WRITE (33,900) (TPAR (2, J, i), J=0, NY+I+JTOP)

WRITE (34,900) (TPAR (2, J, 2), J=0, NY+I+JTOP)

WRITE(35,900) (TPAR(2,J, 3),J=0,NY+I+JTOP)
IF (IDA.EQ.I) THEN

PREF=DA*VEL*VEL* RSTAR/ASTAR

DO 112 J=0,NY+I+JTOP

WFPAR (J) =PREF*DENS (2, J) *DENS (2, J) *TPAR(2, J, 2) *TPAR (2, J, 3) *

- EXP (-E/TPAR (2, J, l) )

IF (WFPAR(J).LT.I.E-78) WFPAR(J)=0.
112 CONTINUE

WRITE(36,900) (WFPAR(J),J=0,NY+I+JTOP)

ENDIF

ENDIF

C ..................... RESET VALUES

DO 116 J=0,NY+I+JTOP

UPAR (1, J ) =UPAR (2, J)

VPAR (I, J) =VPAR (2, J)

TPAR (I, J, 1 ) =TPAR (2, J, 1 )

TPAR (i, J, 2) =TPAR (2, J, 2)

116 TPAR (I, J, 3) =TPAR (2, J, 3)
120 CONTINUE

900 FORMAT(IP,5(IX, EI2.5))

RETURN

END
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